Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) diffusion model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2470 KB  
Article
An Overview of Microplastic Exposure in Urban, Suburban, and Rural Aerosols
by J. Cárdenas-Escudero, S. Deylami, M. López Ochoa, P. Cañamero, J. Urraca Ruiz, D. Galán-Madruga and J. O. Cáceres
Appl. Sci. 2025, 15(16), 8967; https://doi.org/10.3390/app15168967 - 14 Aug 2025
Cited by 1 | Viewed by 1531
Abstract
This study advances the understanding of atmospheric microplastic (MPs) exposure across urban (US), suburban (SS), and rural (RS) areas of Madrid, Spain, for the first time. Air pollution from MPs remains an understudied issue with broad implications for environmental and human health. Recent [...] Read more.
This study advances the understanding of atmospheric microplastic (MPs) exposure across urban (US), suburban (SS), and rural (RS) areas of Madrid, Spain, for the first time. Air pollution from MPs remains an understudied issue with broad implications for environmental and human health. Recent evidence highlights the need for multipoint studies to accurately establish atmospheric exposure to MPs, especially during winter seasons in the city. To address this issue, this work conducted active sampling of ≤10 μm aerosol particles, following EN 12341:2014 standards, during the 2024–2025 winter season. A quantitative innovative method using UV-assisted optical microscopy was applied to assess daily MPs exposure. To trace the potential sources and transport pathways, air mass back trajectories were modelled using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) software. The results showed an average exposure (n = 4) of 80 ± 20; 55 ± 9 and 46 ± 20 MPs·m−3·day−1 during the sampling period in US, SS, and RS, respectively; and an average exposure (n = 4) of 61 ± 11 MPs·m−3·day−1 throughout the winter period between November and December 2024 and January and February 2025. The polymers detected as constituents of MPs were polystyrene, polyethylene, polymethyl methacrylate, and polyethylene terephthalate, achieving a correct identification ratio of 100% for the detected microplastic particles. The HYSPLIT results showed diffuse sources of MPs, especially local, regional, and oceanic sources, in the US. In contrast, microplastic contributions in SS and RS areas originated from local or regional sources, highlighting the need for advanced studies to identify the sources of emissions and transport routes that converge in the occurrence of microplastics in the areas studied. These results demonstrate the atmospheric exposure to microplastics in the city, justifying the need for specialized studies to define the health impacts associated with the inhalation of these emerging pollutants. The findings of this research provide clear evidence of exposure to atmospheric microplastics in urban, suburban, and rural environments in Madrid, suggesting the need for further specialized research to rigorously assess the potential risks to human health associated with microplastic inhalation by the city’s population. Full article
Show Figures

Figure 1

25 pages, 4786 KB  
Article
Air Pollution Measurement and Dispersion Simulation Using Remote and In Situ Monitoring Technologies in an Industrial Complex in Busan, South Korea
by Naghmeh Dehkhoda, Juhyeon Sim, Juseon Shin, Sohee Joo, Sung Hwan Cho, Jeong Hun Kim and Youngmin Noh
Sensors 2024, 24(23), 7836; https://doi.org/10.3390/s24237836 - 7 Dec 2024
Cited by 3 | Viewed by 2870
Abstract
Rapid industrialization and the influx of human resources have led to the establishment of industrial complexes near urban areas, exposing residents to various air pollutants. This has led to a decline in air quality, impacting neighboring residential areas adversely, which highlights the urgent [...] Read more.
Rapid industrialization and the influx of human resources have led to the establishment of industrial complexes near urban areas, exposing residents to various air pollutants. This has led to a decline in air quality, impacting neighboring residential areas adversely, which highlights the urgent need to monitor air pollution in these areas. Recent advancements in technology, such as Solar Occultation Flux (SOF) and Sky Differential Optical Absorption Spectroscopy (SkyDOAS) used as remote sensing techniques and mobile extraction Fourier Transform Infrared Spectrometry (MeFTIR) used as an in situ technique, now offer enhanced precision in estimating the pollutant emission flux and identifying primary sources. In a comprehensive study conducted in 2020 in the Sinpyeong Jangrim Industrial Complex in Busan City, South Korea, a mobile laboratory equipped with SOF, SkyDOAS, and MeFTIR technologies was employed to approximate the emission flux of total alkanes, sulfur dioxide (SO2), nitrogen dioxide (NO2), formaldehyde (HCHO), and methane (CH4). Using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) diffusion model, pollutant dispersion to residential areas was simulated. The highest average daily emission flux was observed for total alkanes, with values of 69.9 ± 71.6 kg/h and 84.1 ± 85.8 kg/h in zones S1 and S2 of the Sinpyeong Jangrim Industrial Complex, respectively. This is primarily due to the prevalence of metal manufacturing and mechanical equipment industries in the area. The HYSPLIT diffusion model confirmed elevated pollution levels in residential areas located southeast of the industrial complex, underscoring the influence of the dominant northwesterly wind direction and wind speed on pollutant dispersion. This highlights the urgent need for targeted interventions to address and mitigate air pollution in downwind residential areas. The total annual emission fluxes were estimated at 399,984 kg/yr and 398,944 kg/yr for zones S1 and S2, respectively. A comparison with the Pollutant Release and Transfer Registers (PRTRs) survey system revealed that the total annual emission fluxes in this study were approximately 24.3 and 4.9 times higher than those reported by PRTRs. This indicates a significant underestimation of the impact of small businesses on local air quality, which was not accounted for in the PRTR survey system. Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

17 pages, 16782 KB  
Article
A Novel Approach for Predicting the Mid–Long-Term Radiation Dose in the Case of a Hypothetical STSBO Nuclear Accident for an Operating Nuclear Power Plant
by Rui Ding and Zehua Liu
Atmosphere 2024, 15(11), 1291; https://doi.org/10.3390/atmos15111291 - 28 Oct 2024
Cited by 1 | Viewed by 2182
Abstract
Four severe nuclear accident scenarios have been identified for operating nuclear power plants (ONPPs). However, there is a research gap in predicting the mid–long-term radiation doses for these scenarios. This study aims to address this gap by proposing a novel approach for predicting [...] Read more.
Four severe nuclear accident scenarios have been identified for operating nuclear power plants (ONPPs). However, there is a research gap in predicting the mid–long-term radiation doses for these scenarios. This study aims to address this gap by proposing a novel approach for predicting the mid–long-term radiation dose in the case of a hypothetical short-term station blackout (STSBO) scenario, one of the aforementioned scenarios. Firstly, the Weather Research and Forecasting (WRF) model was coupled with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (WRF-HYSPLIT) model to establish an atmospheric transport and diffusion model for airborne radionuclides, and the regularity of the atmospheric transport and diffusion for the airborne radionuclides was determined. Subsequently, the Residual Radioactive Material Guidelines (RESRAD) OFFSITE (RESRAD-OFFSITE) code was utilized to establish a radiation dose model for predicting the mid–long-term radiation dose resulting from the airborne radionuclides, and the evolution of the mid–long-term radiation dose was analyzed. Finally, the proposed approach was applied to an ONPP, and the results were used to predict the mid–long-term public radiation dose. The results indicated that the total radiation dose would be lower than the dose limit recommended by the International Commission on Radiological Protection (1 mSv/yr) from the second month to the 100th year after the hypothetical STSBO nuclear accident, and the total radiation dose would decrease slowly over time. Recommendations are made for offsite emergency response measures. These research findings can assist ONPPs in analyzing their environmental impacts in the event of an STSBO scenario. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 9563 KB  
Article
Aerosol Evolution and Influencing Factor Analysis during Haze Periods in the Guanzhong Area of China Based on Multi-Source Data
by Yanling Zhong, Jinling Kong, Yizhu Jiang, Qiutong Zhang, Hongxia Ma and Xixuan Wang
Atmosphere 2022, 13(12), 1975; https://doi.org/10.3390/atmos13121975 - 25 Nov 2022
Cited by 3 | Viewed by 2148
Abstract
Aerosols suspended in the atmosphere negatively affect air quality and public health and promote global climate change. The Guanzhong area in China was selected as the study area. Air quality data from July 2018 to June 2021 were recorded daily, and 19 haze [...] Read more.
Aerosols suspended in the atmosphere negatively affect air quality and public health and promote global climate change. The Guanzhong area in China was selected as the study area. Air quality data from July 2018 to June 2021 were recorded daily, and 19 haze periods were selected for this study. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to simulate the air mass transport trajectory during this haze period to classify the formation process. The spatial distribution of the aerosol optical depth (AOD) was obtained by processing Moderate-resolution Imaging Spectroradiometer (MODIS) data using the dark target (DT) method. Three factors were used to analyze the AOD spatial distribution characteristics based on the perceptual hashing algorithm (PHA): GDP, population density, and topography. Correlations between aerosols and the wind direction, wind speed, and precipitation were analyzed using weather station data. The research results showed that the haze period in Guanzhong was mainly due to locally generated haze (94.7%). The spatial distribution factors are GDP, population density, and topography. The statistical results showed that wind direction mainly affected aerosol diffusion in Guanzhong, while wind speed (r = −0.63) and precipitation (r = −0.66) had a significant influence on aerosol accumulation and diffusion. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

14 pages, 3366 KB  
Article
Analysis of Atmospheric CO2 and CO at Akedala Atmospheric Background Observation Station, a Regional Station in Northwestern China
by Zhujun Zhao, Qing He, Zhongqi Lu, Quanwei Zhao and Jianlin Wang
Int. J. Environ. Res. Public Health 2022, 19(11), 6948; https://doi.org/10.3390/ijerph19116948 - 6 Jun 2022
Cited by 7 | Viewed by 2887
Abstract
Air samples were collected by flasks and analyzed via a Picarro G2401 gas analyzer for carbon dioxide (CO2) and carbon monoxide (CO) at the Akedala Atmospheric Background Station in Xinjiang, China, from September 2009 to December 2019, to analyze the changes [...] Read more.
Air samples were collected by flasks and analyzed via a Picarro G2401 gas analyzer for carbon dioxide (CO2) and carbon monoxide (CO) at the Akedala Atmospheric Background Station in Xinjiang, China, from September 2009 to December 2019, to analyze the changes in the characteristics of atmospheric CO2 and CO and determine the sources. The results show that the annual average CO2 concentration showed an increasing trend (growth rate: 1.90 ppm year−1), ranging from 389.80 to 410.43 ppm, and the annual average CO concentration also showed an increasing trend (growth rate: 1.78 ppb year−1), ranging from 136.30 to 189.82 ppb. The CO2 concentration and growth rate were the highest in winter, followed by autumn, spring, and summer. The CO concentration and growth rate were also the highest in winter due to anthropogenic emissions, ecosystem effects, and diffusion conditions. The main trajectories of CO2 and CO determined by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model were parallel to the Irtysh River valley and then passed through the Old Wind Pass. Furthermore, the main source regions of CO2 and CO at the Akedala Station were eastern Kazakhstan, southern Russia, western Mongolia, and the Xinjiang Tianshan North Slope Economic Zone of China. This study reflects the characteristics of long-term changes in CO2 and CO concentrations at the Akedala station and provides fundamental data for the studies on environmental changes and climate change in Central Asia. Full article
(This article belongs to the Special Issue The Formation and Contaminant Interactions of Photochemical Pollution)
Show Figures

Figure 1

15 pages, 2772 KB  
Article
Characteristics and Source Apportionment of PM2.5 and O3 during Winter of 2013 and 2018 in Beijing
by Yisheng Zhong, Xiaoqi Wang and Shuiyuan Cheng
Atmosphere 2020, 11(12), 1324; https://doi.org/10.3390/atmos11121324 - 7 Dec 2020
Cited by 9 | Viewed by 3329
Abstract
Beijing, the capital city of China, has achieved remarkable progress in terms of an improvement in air quality under strict control policies in the past 10 years from various sources. In this paper, the characteristics of fine particulate matter (PM2.5) and [...] Read more.
Beijing, the capital city of China, has achieved remarkable progress in terms of an improvement in air quality under strict control policies in the past 10 years from various sources. In this paper, the characteristics of fine particulate matter (PM2.5) and O3 in January 2013 and 2018 in Beijing are discussed on the basis of daily sample analysis and hourly monitoring data. It was found that the PM2.5 pollution for the month of January in Beijing has been greatly curbed. The SO42− concentration and proportion of PM2.5 decreased, while the proportions of NO3 and NH4+ increased. Organic matter represented the major component during the two periods with the proportions of 31.7% ± 8.2% and 31.4% ± 9.8%. The results of the Hybrid Single Particle Lagrangian Integrated Trajectory (Hysplit) model and Potential Source Contribution Function (PSCF) method showed that air mass from southern nearby regions accounted for 34% and 10% in 2013 and 2018, respectively, which was closely related to the pollution period. Thus, the input direction of air mass in January 2018 was more conducive to the diffusion of pollutants. Modeling results of the Weather Research and Forecasting model (WRF) coupled with Comprehensive Air Quality Model Extensions (CAMx) indicated that the contribution of industry sources to PM2.5 and O3 decreased from 2013 to 2018, while mobile sources increased. This was mainly due to the different control policies on various emission sources. In terms of O3 sources, more control measurements should be taken on volatile organic compounds (VOCs) due to its prominent effect on O3 concentration in both periods. The reduction in emissions and the meteorological conditions both contributed effectively to the sharp decrease in PM2.5 concentration. However, the change in weather conditions had the greater impact on the decrease in PM2.5 concentration, while the reduction in emissions was weakened as a function of this change. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

18 pages, 3423 KB  
Article
The Influence of Multi-Scale Atmospheric Circulation on Severe Haze Events in Autumn and Winter in Shanghai, China
by Zezheng Zhao, Hailing Xi, Ana Russo, Huadong Du, Youguo Gong, Jie Xiang, Zeming Zhou, Jiping Zhang, Chengcai Li and Chengjun Zhou
Sustainability 2019, 11(21), 5979; https://doi.org/10.3390/su11215979 - 28 Oct 2019
Cited by 15 | Viewed by 4312
Abstract
Severe haze events have many adverse effects on agricultural production and human activity. Haze events are often associated with specific patterns of atmospheric circulation. Therefore, studying the relationship between atmospheric circulation and haze is particularly important for early warning and forecasting of urban [...] Read more.
Severe haze events have many adverse effects on agricultural production and human activity. Haze events are often associated with specific patterns of atmospheric circulation. Therefore, studying the relationship between atmospheric circulation and haze is particularly important for early warning and forecasting of urban haze events. In order to study the relationship between multi-scale atmospheric circulation and severe haze events in autumn and winter in Shanghai, China, we used a T-mode objective classification method to classify autumn and winter atmospheric circulation patterns into six types based on sea level pressure data from 2007 to 2016 in the Shanghai area. For the period between September 2016 and February 2017, we used the Allwine–Whiteman method to classify the local wind in Shanghai into three categories: stagnation, recirculation, and ventilation. By further studying the PM2.5 concentration distribution, visibility distribution, and other meteorological characteristics of each circulation type (CT) and local wind field type, we found that the Shanghai area is most prone to severe haze when exposed to certain circulation patterns (CT1, CT2, and CT4), mainly associated to the cold air activity and the displacement of the high pressure system relative to Shanghai. We also found that the local wind fields in the Shanghai area are dominated by recirculation and stagnation events. These conclusions were further verified by studying a typical pollution process in Shanghai in November 2016 and the pollutant diffusion path using the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory model) simulation model. Full article
Show Figures

Figure 1

16 pages, 5726 KB  
Article
Characteristics of the Transport of a Typical Pollution Event in the Chengdu Area Based on Remote Sensing Data and Numerical Simulations
by Ying Zhang, Zhihong Liu, Xiaotong Lv, Yang Zhang and Jun Qian
Atmosphere 2016, 7(10), 127; https://doi.org/10.3390/atmos7100127 - 9 Oct 2016
Cited by 17 | Viewed by 6024
Abstract
A heavy air pollution event occurred in Chengdu between 7 May 2014 and 8 May 2014. The present study established tracer sources based on HJ-1 satellite data, micropulse light detection and ranging (LiDAR) remote sensing data, and backward trajectories simulated using the hybrid [...] Read more.
A heavy air pollution event occurred in Chengdu between 7 May 2014 and 8 May 2014. The present study established tracer sources based on HJ-1 satellite data, micropulse light detection and ranging (LiDAR) remote sensing data, and backward trajectories simulated using the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model. Additionally, the present study analyzed the diffusion conditions for the sources and characteristics of the pollutant transport in this pollution event through simulation using a mesoscale atmospheric chemistry transport model—the weather research forecasting model with chemistry (WRF–CHEM). The results show that the change in the boundary-layer height over Chengdu had a relatively large effect on the vertical diffusion of pollutants. During the pollution event, Chengdu, Meishan, and Leshan were areas of significantly low mean ventilation coefficients ( V H ). In Chengdu, the V H was extremely low at night, and there was a temperature inversion near the ground, resulting in the continuous accumulation of pollutants at night and a continuous worsening of the pollution. During the period of heavy pollution, there were straw-burning sites in Meishan, Ziyang, Neijiang, Zigong, and Deyang. On 7 May 2014, the pollutants in Chengdu mainly originated from Meishan. The accumulation in Chengdu of pollutants originating in Meishan and Deyang led to highly concentrated pollution on 8 May 2014, to which the pollutants originating in Deyang were the main contributor. The transport of pollutants resulting from straw burning in the study area and the relatively poor conditions for the pollutant diffusion in Chengdu collectively led to the heavy air pollution event investigated in the present study. Full article
Show Figures

Figure 1

Back to TopTop