Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = humid hillslope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5597 KiB  
Article
Quantification of Soil Water Dynamics Response to Rainfall in Forested Hillslope Based on Soil Water Potential Measurement
by Ruxin Yang, Fei Wang, Xiangyu Tang, Junfang Cui, Genxu Wang, Li Guo and Han Zhang
Forests 2025, 16(1), 75; https://doi.org/10.3390/f16010075 - 5 Jan 2025
Viewed by 902
Abstract
Soil hydrological response is crucial for controlling water flow and biogeochemical processes on hillslopes. Understanding soil water dynamics in response to rainfall is essential for accurate hydrological modeling but remains challenging in humid mountainous regions characterized by high antecedent moisture and substantial heterogeneity. [...] Read more.
Soil hydrological response is crucial for controlling water flow and biogeochemical processes on hillslopes. Understanding soil water dynamics in response to rainfall is essential for accurate hydrological modeling but remains challenging in humid mountainous regions characterized by high antecedent moisture and substantial heterogeneity. We sought to elucidate soil water response patterns to rainfall by estimating lag time, wetting front velocity, rainfall threshold, and preferential flow (PF) frequency in 166 rainfall events across 36 sites on two hillslopes within the Hailuogou catchment, located on the eastern Qinghai–Tibet Plateau. Results indicated that over 90% of the events triggered rapid soil water potential (SWP) responses to depths of 100 cm, with faster responses observed at steeper upslope positions with thinner O horizons. Even light rainfall (2–3 mm) was sufficient to trigger SWP responses. PF was prevalent across the hillslopes, with higher occurrence frequencies at upslope and downslope positions due to steep terrain and consistently moist conditions, respectively. Using the Multivariate Adaptive Regression Splines (MARS) model, we found that site factors (e.g., soil properties and topography) had a greater influence on SWP responses than rainfall characteristics or antecedent soil wetness conditions. These findings highlighted the value of SWP in capturing soil water dynamics and enhancing the understanding and modeling of complex hillslope hydrological processes. Full article
Show Figures

Figure 1

22 pages, 3247 KiB  
Article
Modeled Forest Conversion Influences Humid Tropical Watershed Hydrology More than Projected Climate Change
by Taylor Joyal, Alexander K. Fremier and Jan Boll
Hydrology 2023, 10(8), 160; https://doi.org/10.3390/hydrology10080160 - 31 Jul 2023
Cited by 1 | Viewed by 2529
Abstract
In the humid tropics, forest conversion and climate change threaten the hydrological function and stationarity of watersheds, particularly in steep terrain. As climate change intensifies, shifting precipitation patterns and expanding agricultural and pastoral land use may effectively reduce the resilience of headwater catchments. [...] Read more.
In the humid tropics, forest conversion and climate change threaten the hydrological function and stationarity of watersheds, particularly in steep terrain. As climate change intensifies, shifting precipitation patterns and expanding agricultural and pastoral land use may effectively reduce the resilience of headwater catchments. Compounding this problem is the limited long-term monitoring in developing countries for planning in an uncertain future. In this study, we asked which change, climate or land use, more greatly affects stream discharge in humid tropical mountain watersheds? To answer this question, we used the process-based, spatially distributed Soil Moisture Routing model. After first evaluating model performance (Ns = 0.73), we conducted a global sensitivity analysis to identify the model parameters that most strongly influence simulated watershed discharge. In particular, peak flows are most influenced by input model parameters that represent shallow subsurface soil pathways and saturation-excess runoff while low flows are most sensitive to macropore hydraulic conductivity, soil depth and porosity parameters. We then simulated a range of land use and climate scenarios in three mountain watersheds of central Costa Rica. Our results show that deforestation influences streamflow more than altered precipitation and temperature patterns through changes in first-order hydrologic hillslope processes. However, forest conversion coupled with intensifying precipitation events amplifies hydrological extremes, reducing the hydrological resilience to predicted climate shifts in mountain watersheds of the humid tropics. This finding suggests that reforestation can help mitigate the effects of climate change on streamflow dynamics in the tropics including impacts to water availability, flood pulses, channel geomorphology and aquatic habitat associated with altered flow regimes. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

17 pages, 18966 KiB  
Article
Soil Moisture Behavior in Relation to Topography and Land Use for Two Andean Colombian Catchments
by Henry Garzón-Sánchez, Juan Carlos Loaiza-Usuga and Jaime Ignacio Vélez-Upégui
Water 2021, 13(11), 1448; https://doi.org/10.3390/w13111448 - 21 May 2021
Cited by 4 | Viewed by 3591
Abstract
Understanding the soil moisture behavior in relation to land use in tropical Andean mountain catchments is essential for comprehending water fluxes, ecohydrological relations and hydrological dynamics in this understudied ecosystem. Soils are a key factor of these ecosystems, especially in reference to water [...] Read more.
Understanding the soil moisture behavior in relation to land use in tropical Andean mountain catchments is essential for comprehending water fluxes, ecohydrological relations and hydrological dynamics in this understudied ecosystem. Soils are a key factor of these ecosystems, especially in reference to water level regulation and anthropogenic activities that can alter the interactions, and generate physical, chemical and biological imbalances. In this study, we investigated the relationship between precipitation, soil water content (SWC) and the flow at different pedon scales, and hillslope and microcatchment scales subjected to different land uses. The results showed the relation between the soils uses, topographical conditions and soil moisture at the microcatchment scale. At the pedon scale, soil moisture is higher and with a low variability in depth; high soil moisture content throughout the study period was registered in forest > pasture > coffee agroforestry systems. The topographic wetness index (TWI), despite its adjusted interpretation of the behavior of humidity at the microcatchment scale, is a poor predictor of the behavior of soil humidity at the pedon scale. Pedon water content has a close relation with the precipitation behavior, especially in prolonged dry and humid periods. The soils studied tend to present udic moisture regimes with a dry period of approximately 67 accumulative days per year. The mean flow behavior responds to precipitation and soil moisture behavior at a monthly scale. Understanding the consequences of the land cover changes in relation to soil water behavior, as well as how soil water interacts with the different components of the hydric balance at different scales, allows an understanding of the complex interactions in natural microcatchments under different land use systems. Full article
(This article belongs to the Special Issue Soil–Plant–Water Dynamics on a Field Scale)
Show Figures

Figure 1

20 pages, 5867 KiB  
Article
Linking Soil Hydrology and Creep: A Northern Andes Case
by Aleen Pertuz-Paz, Gaspar Monsalve, Juan Carlos Loaiza-Úsuga, José Humberto Caballero-Acosta, Laura Inés Agudelo-Vélez and Roy C. Sidle
Geosciences 2020, 10(11), 472; https://doi.org/10.3390/geosciences10110472 - 21 Nov 2020
Cited by 4 | Viewed by 3483
Abstract
Soil creep is common along the hillslopes of the tropical Andes of Colombia, where very heterogeneous soils develop on old debris flow deposits and are subjected to abundant rainfall with a bimodal annual regime. In particular, the western hillside of the city of [...] Read more.
Soil creep is common along the hillslopes of the tropical Andes of Colombia, where very heterogeneous soils develop on old debris flow deposits and are subjected to abundant rainfall with a bimodal annual regime. In particular, the western hillside of the city of Medellín, Colombia, is comprised of a series of debris and earth flow deposits in which landslides and soil creep are common. To explore linkages between soil creep and hydrology, we selected an experimental site in the western hillslope of the Medellín valley to assess the behavior of water within the soil mass, its relationship with rainfall, and its connection with soil displacement. In experimental plots, we systematically measured runoff, percolation, water table levels, and volumetric water content, for a period of almost 2 years; we also conducted several alti-planimetric positioning surveys to estimate relative displacements of the soil surface. Moisture content of the soil remained above field capacity for most of the year (~68% of the time) and active and quasi-permanent lateral subsurface flow occurred within the upper 80 cm of the profile. The shallow flow likely facilitates the downslope movement. Additionally, our results suggest that displacement magnitudes are largest during the wet season of September–October–November, when a highly humid soil experiences changes in water content, so it is during this time that the effects of expansion / contraction of the soil particles (associated to wetting / drying cycles) contribute the most to the movement. This observational study represents a contribution to the understanding of soil creep in tropical hillslopes, where it responds to the wetting / drying cycles, with the particularities of a rainy weather (>1500 mm/year), warm temperatures (~22 °C on average), and a bimodal precipitation seasonality. Full article
(This article belongs to the Special Issue Landslides and Granular Flows on Earth)
Show Figures

Figure 1

19 pages, 2612 KiB  
Article
Tree Roots Anchoring and Binding Soil: Reducing Landslide Risk in Indonesian Agroforestry
by Kurniatun Hairiah, Widianto Widianto, Didik Suprayogo and Meine Van Noordwijk
Land 2020, 9(8), 256; https://doi.org/10.3390/land9080256 - 1 Aug 2020
Cited by 65 | Viewed by 16773
Abstract
Tree root systems stabilize hillslopes and riverbanks, reducing landslide risk, but related data for the humid tropics are scarce. We tested fractal allometry hypotheses on differences in the vertical and horizontal distribution of roots of trees commonly found in agroforestry systems and on [...] Read more.
Tree root systems stabilize hillslopes and riverbanks, reducing landslide risk, but related data for the humid tropics are scarce. We tested fractal allometry hypotheses on differences in the vertical and horizontal distribution of roots of trees commonly found in agroforestry systems and on shear strength of soil in relation to root length density in the topsoil. Proximal roots of 685 trees (55 species; 4–20 cm stem diameter at breast height, dbh) were observed across six landscapes in Indonesia. The Index of Root Anchoring (IRA) and the Index of Root Binding (IRB) were calculated as ΣDv2/dbh2 and as ΣDh2/dbh2, respectively, where Dv and Dh are the diameters of vertical (angle > 45°) and horizontal (angle < 45°) proximal roots. High IRA values (>1.0) were observed in coffee and several common shade trees. Common fruit trees in coffee agroforestry had low medium values, indicating modest ‘soil anchoring’. Where root length density (Lrv) in the topsoil is less than 10 km m−3 shear strength largely depends on texture; for Lrv > 10 shear strength was >1.5 kg m−2 at the texture tested. In conclusion, a mix of tree species with deep roots and grasses with intense fine roots provides the highest hillslope and riverbank stability. Full article
(This article belongs to the Special Issue Agroforestry-Based Ecosystem Services)
Show Figures

Figure 1

15 pages, 2415 KiB  
Article
Spatial Variability of Soil Moisture in Newly Implemented Agricultural Bench Terraces in the Ethiopian Plateau
by Shimbahri Mesfin, Lucas Allan Almeida Oliveira, Eyasu Yazew, Elena Bresci and Giulio Castelli
Water 2019, 11(10), 2134; https://doi.org/10.3390/w11102134 - 14 Oct 2019
Cited by 24 | Viewed by 6468
Abstract
In arid areas prone to desertification and soil erosion, the effectiveness of radical bench terracing in reducing drought risk is dependent on its correct implementation. However, the relationship between proper terracing implementation and the landscape capacity of holding soil moisture is still not [...] Read more.
In arid areas prone to desertification and soil erosion, the effectiveness of radical bench terracing in reducing drought risk is dependent on its correct implementation. However, the relationship between proper terracing implementation and the landscape capacity of holding soil moisture is still not understood. Moreover, spatial patterns of Soil Water Content (SWC) within the same terraced hillslope are weakly studied. The present paper analyses SWC variations in four newly implemented terraced sites in Tigray Region, Ethiopia. In all sites, terraced areas show SWC significantly higher than non-terraced ones, with the lower part of the terraced hillslope more humid than the others. A Multiple Linear Regression (MLR) analysis highlighted significant dependency of SWC from the date of analysis, the position in the terraced slope, and its significant positive correlation with the percent of Water Stable Aggregates (WSA) analyzed at the study sites. Since high soil disturbance induces low soil aggregates stability, this result shows how low soil disturbance can significantly increase SWC of radical terraces. Overall, the results of the present paper testify the good performances of bench terraces in Northern Ethiopia in terms of soil water conservation, and can represent a benchmark study informing future terracing implementation in some arid and semi-arid agricultural areas of the world. Full article
(This article belongs to the Special Issue Terraced Landscapes and Hydrological-Geological Hazards)
Show Figures

Figure 1

21 pages, 1132 KiB  
Review
Causes and Controlling Factors of Valley Bottom Gullies
by Selamawit Amare, Saskia Keesstra, Martine van der Ploeg, Eddy Langendoen, Tammo Steenhuis and Seifu Tilahun
Land 2019, 8(9), 141; https://doi.org/10.3390/land8090141 - 17 Sep 2019
Cited by 39 | Viewed by 6281
Abstract
Valley bottomland provides diverse agricultural and ecosystem benefits. Due to concentrated flow paths, they are more vulnerable to gully erosion than hillslope areas. The objective of this review was to show what caused valley bottoms gullies and to present deficiencies in existing rehabilitation [...] Read more.
Valley bottomland provides diverse agricultural and ecosystem benefits. Due to concentrated flow paths, they are more vulnerable to gully erosion than hillslope areas. The objective of this review was to show what caused valley bottoms gullies and to present deficiencies in existing rehabilitation measures. From the literature review, we found the following general trends: watershed characteristics determine location of valley bottom gullies; an increase in water transported from the watershed initiates the formation of gullies; the rate of change of the valley bottom gullies, once initiated, depends on the amount of rainfall and the soil and bedrock properties. Especially in humid climates, the presence of subsurface flow greatly enhances bank slippage and advancement of gully heads. Valley bottom gully reclamation measures are generally effective in arid and semi-arid areas with the limited subsurface flow and deep groundwater tables, whereas, for (sub) humid regions, similar remedial actions are not successful as they do not account for the effects of subsurface flows. To ensure effective implementation of rehabilitation measures, especially for humid regions, an integrated landscape approach that accounts for the combined subsurface and surface drainage is needed. Full article
(This article belongs to the Special Issue Land Degradation Neutrality (LDN))
Show Figures

Figure 1

22 pages, 4577 KiB  
Article
Understanding of Storm Runoff Generation in a Weathered, Fractured Granitoid Headwater Catchment in Northern China
by Sihan Zhao, Hongchang Hu, Ciaran J. Harman, Fuqiang Tian, Qiang Tie, Yaping Liu and Zhenyang Peng
Water 2019, 11(1), 123; https://doi.org/10.3390/w11010123 - 11 Jan 2019
Cited by 14 | Viewed by 4393
Abstract
Few of the classical field studies of streamflow generation in headwater watersheds have been conducted in catchments with thin soils and deeply weathered crystalline silicate bedrock. As such, the role of the (potentially very large) storage capacity of weathered, fractured rock in baseflow [...] Read more.
Few of the classical field studies of streamflow generation in headwater watersheds have been conducted in catchments with thin soils and deeply weathered crystalline silicate bedrock. As such, the role of the (potentially very large) storage capacity of weathered, fractured rock in baseflow and storm event discharge remains poorly characterized. Here we present a study of streamflow generation in an upland semi-humid watershed (Xitaizi Experimental Watershed, XEW, 4.22 km2) dominated by baseflow feeding one of the main water supply reservoirs for the city of Beijing, China. This catchment is relatively dry (625 mm/yr precipitation, 480 mm/yr Evapotranspiration), but has strongly seasonal precipitation that varies in phase with strongly seasonal potential evapotranspiration. The catchment was instrumented with four weather stations and precipitation collectors, 11 deep wells drilled into the bedrock along three hillslopes, and additional soil moisture sensors and water samplers along one hillslope. In six storm events over two years, samples of rainfall, soil water (10–80 cm depth), groundwater, and stream water were collected with high frequency and analyzed for stable water isotopes (δ18O and δ2H). Tracer-based hydrograph separation showed that event water (precipitation) makes up the majority of the hydrograph peak above baseflow, and pre-event water contributions (on average) simply represent the steady release of groundwater. The quantity of event water corresponded to a very small effective contributing area (<0.2% of the catchment) that nevertheless showed a clear dependence on catchment wetness as measured by the streamflow. The streamflow itself was isotopically identical to the deep groundwater in wells. This suggests that the fractured, weathered, bedrock system dominates the production of streamflow in this catchment. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop