Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = human embryonic-derived mesenchymal progenitor cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 21082 KiB  
Article
The Effects of Fucoidan Derived from Sargassum filipendula and Fucus vesiculosus on the Survival and Mineralisation of Osteogenic Progenitors
by Dhanak Gupta, Diana C. Martinez, Miguel Angel Puertas-Mejía, Vanessa L. Hearnden and Gwendolen C. Reilly
Int. J. Mol. Sci. 2024, 25(4), 2085; https://doi.org/10.3390/ijms25042085 - 8 Feb 2024
Cited by 2 | Viewed by 2424
Abstract
Osteosarcoma is a bone cancer primarily affecting teenagers. It has a poor prognosis and diminished quality of life after treatment due to chemotherapy side effects, surgical complications and post-surgical osteoporosis risks. The sulphated polysaccharide fucoidan, derived from brown algae, has been a subject [...] Read more.
Osteosarcoma is a bone cancer primarily affecting teenagers. It has a poor prognosis and diminished quality of life after treatment due to chemotherapy side effects, surgical complications and post-surgical osteoporosis risks. The sulphated polysaccharide fucoidan, derived from brown algae, has been a subject of interest for its potential anti-cancer properties and its impact on bone regeneration. This study explores the influence of crude, low-molecular-weight (LMW, 10–50 kDa), medium-molecular-weight (MMW, 50–100 kDa) and high-molecular-weight (HMW, >100 kDa) fractions from Sargassum filipendula, harvested from the Colombian sea coast, as well as crude fucoidan from Fucus vesiculosus, on a specific human osteoprogenitor cell type, human embryonic-derived mesenchymal stem cells. Fourier transform infrared spectroscopy coupled with attenuated total reflection (FTIR-ATR) results showed the highest sulphation levels and lowest uronic acid content in crude extract from F. vesiculosus. There was a dose-dependent drop in focal adhesion formation, proliferation and osteogenic differentiation of cells for all fucoidan types, but the least toxicity was observed for LMW and MMW. Transmission electron microscopy (TEM), JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetraethylbenzimi-dazolylcarbocyanine iodide) staining and cytochrome c analyses confirmed mitochondrial damage, swollen ER and upregulated autophagy due to fucoidans, with the highest severity in the case of F. vesiculosus fucoidan. Stress-induced apoptosis-like cell death by F. vesiculosus fucoidan and stress-induced necrosis-like cell death by S. filipendula fucoidans were also confirmed. LMW and MMW doses of <200 ng/mL were the least toxic and showed potential osteoinductivity. This research underscores the multifaceted impact of fucoidans on osteoprogenitor cells and highlights the delicate balance between potential therapeutic benefits and the challenges involved in using fucoidans for post-surgery treatments in patients with osteosarcoma. Full article
(This article belongs to the Special Issue Stem Cells and Regenerative Medicine: In Vitro and In Vivo Studies)
Show Figures

Figure 1

16 pages, 2317 KiB  
Article
Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology
by Victoria Sook Keng Tung, Fasil Mathews, Marina Boruk, Gabrielle Suppa, Robert Foronjy, Michele T. Pato, Carlos N. Pato, James A. Knowles and Oleg V. Evgrafov
Int. J. Mol. Sci. 2023, 24(20), 15339; https://doi.org/10.3390/ijms242015339 - 19 Oct 2023
Cited by 6 | Viewed by 1795
Abstract
The study of neurodevelopmental molecular mechanisms in schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously utilized cell lines with neural progenitor properties (CNON) derived from the superior or middle turbinates of patients with schizophrenia [...] Read more.
The study of neurodevelopmental molecular mechanisms in schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously utilized cell lines with neural progenitor properties (CNON) derived from the superior or middle turbinates of patients with schizophrenia and control groups to study schizophrenia-specific gene expression. In this study, we analyzed single-cell RNA seq data from two CNON cell lines (one derived from an individual with schizophrenia (SCZ) and the other from a control group) and two biopsy samples from the middle turbinate (MT) (also from an individual with SCZ and a control). We compared our data with previously published data regarding the olfactory neuroepithelium and demonstrated that CNON originated from a single cell type present both in middle turbinate and the olfactory neuroepithelium and expressed in multiple markers of mesenchymal cells. To define the relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data derived from an embryonic brain and found that the expression profile of the CNON closely matched the expression profile one of the cell types in the embryonic brain. Finally, we evaluated the differences between SCZ and control samples to assess the utility and potential benefits of using CNON single-cell RNA seq to study the etiology of schizophrenia. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cells in Neurological Disorder)
Show Figures

Figure 1

20 pages, 1227 KiB  
Review
The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases
by Christina Nikokiraki, Adriana Psaraki and Maria G. Roubelakis
Cells 2022, 11(9), 1410; https://doi.org/10.3390/cells11091410 - 21 Apr 2022
Cited by 20 | Viewed by 5086
Abstract
The liver represents the most important metabolic organ of the human body. It is evident that an imbalance of liver function can lead to several pathological conditions, known as liver failure. Orthotropic liver transplantation (OLT) is currently the most effective and established treatment [...] Read more.
The liver represents the most important metabolic organ of the human body. It is evident that an imbalance of liver function can lead to several pathological conditions, known as liver failure. Orthotropic liver transplantation (OLT) is currently the most effective and established treatment for end-stage liver diseases and acute liver failure (ALF). Due to several limitations, stem-cell-based therapies are currently being developed as alternative solutions. Stem cells or progenitor cells derived from various sources have emerged as an alternative source of hepatic regeneration. Therefore, hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are also known to differentiate into hepatocyte-like cells (HPLCs) and liver progenitor cells (LPCs) that can be used in preclinical or clinical studies of liver disease. Furthermore, these cells have been shown to be effective in the development of liver organoids that can be used for disease modeling, drug testing and regenerative medicine. In this review, we aim to discuss the characteristics of stem-cell-based therapies for liver diseases and present the current status and future prospects of using HLCs, LPCs or liver organoids in clinical trials. Full article
Show Figures

Figure 1

14 pages, 1027 KiB  
Article
Human Embryonic-Derived Mesenchymal Progenitor Cells (hES-MP Cells) are Fully Supported in Culture with Human Platelet Lysates
by Sandra M. Jonsdottir-Buch, Kristbjorg Gunnarsdottir and Olafur E. Sigurjonsson
Bioengineering 2020, 7(3), 75; https://doi.org/10.3390/bioengineering7030075 - 20 Jul 2020
Cited by 3 | Viewed by 4878
Abstract
Human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells are mesenchymal-like cells, derived from human embryonic stem cells without the aid of feeder cells. They have been suggested as a potential alternative to mesenchymal stromal cells (MSCs) in regenerative medicine due to their mesenchymal-like [...] Read more.
Human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells are mesenchymal-like cells, derived from human embryonic stem cells without the aid of feeder cells. They have been suggested as a potential alternative to mesenchymal stromal cells (MSCs) in regenerative medicine due to their mesenchymal-like proliferation and differentiation characteristics. Cells and cell products intended for regenerative medicine in humans should be derived, expanded and differentiated using conditions free of animal-derived products to minimize risk of animal-transmitted disease and immune reactions to foreign proteins. Human platelets are rich in growth factors needed for cell culture and have been used successfully as an animal serum replacement for MSC expansion and differentiation. In this study, we compared the proliferation of hES-MP cells and MSCs; the hES-MP cell growth was sustained for longer than that of MSCs. Growth factors, gene expression, and surface marker expression in hES-MP cells cultured with either human platelet lysate (hPL) or fetal bovine serum (FBS) supplementation were compared, along with differentiation to osteogenic and chondrogenic lineages. Despite some differences between hES-MP cells grown in hPL- and FBS-supplemented media, hPL was found to be a suitable replacement for FBS. In this paper, we demonstrate for the first time that hES-MP cells can be grown using platelet lysates from expired platelet concentrates (hPL). Full article
(This article belongs to the Special Issue Stem Cell Bioprocessing and Manufacturing)
Show Figures

Figure 1

9 pages, 249 KiB  
Communication
Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States
by Andrew Platt, Brian T. David and Richard G. Fessler
Medicines 2020, 7(5), 27; https://doi.org/10.3390/medicines7050027 - 12 May 2020
Cited by 9 | Viewed by 6484
Abstract
Background: Although many therapeutic approaches have been attempted to treat spinal cord injury, cellular transplantation offers the greatest promise in reconstituting the architecture of the damaged cord. Methods: A literature review was conducted to search for clinical trials investigating stem cells as treatment [...] Read more.
Background: Although many therapeutic approaches have been attempted to treat spinal cord injury, cellular transplantation offers the greatest promise in reconstituting the architecture of the damaged cord. Methods: A literature review was conducted to search for clinical trials investigating stem cells as treatment for spinal cord injury in the United States. Results: Overall, eight studies met inclusion criteria. Of the included studies, four were identified as being terminated, suspended, or not yet recruiting. Two studies were identified as currently recruiting, including one phase one trial evaluating stereotactic injections of human spinal cord-derived neural stem cells in patients with chronic spinal cord injuries, and one trial of transplantation of autologous bone marrow derived stem cells via paraspinal injections, intravenous injections, and intranasal placement. One study was identified as an active study, a phase one trial of intrathecal injection of 100 million autologous, ex-vivo expanded, adipose-derived mesenchymal stem cells. One trial that was listed as completed is a phase 1/2a, dose escalation study, investigating stereotactic injection of human embryonic stem cell derived oligodendrocyte progenitor cells. Conclusions: Although few significant publications have emerged to this point, current trial results are promising. Full article
(This article belongs to the Special Issue Recent Advances in Stem Cell Treatment)
14 pages, 325 KiB  
Review
Reprogramming Cells for Brain Repair
by Alyx T. Guarino and Randall D. McKinnon
Brain Sci. 2013, 3(3), 1215-1228; https://doi.org/10.3390/brainsci3031215 - 6 Aug 2013
Cited by 4 | Viewed by 7504
Abstract
At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to [...] Read more.
At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs) can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC) grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC)-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair. Full article
(This article belongs to the Special Issue Myelin Repair)
Show Figures

Graphical abstract

Back to TopTop