Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = horseshoe-shaped tunnels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2334 KiB  
Article
Prediction of Surface Deformation Induced by Ultra-Shallow-Buried Pilot Tunnel Construction
by Caijun Liu, Xiangdong Li, Yang Yang, Xing Gao, Yupeng Shen and Peng Jing
Appl. Sci. 2025, 15(13), 7546; https://doi.org/10.3390/app15137546 - 4 Jul 2025
Viewed by 244
Abstract
The prediction of ground deformation during ultra-shallow-buried pilot tunnel construction is critical for urban rail transit projects in complex geological settings, yet existing cross-section models often lack accuracy. This study proposes an enhanced non-uniform convergence model based on stochastic medium theory, which decomposes [...] Read more.
The prediction of ground deformation during ultra-shallow-buried pilot tunnel construction is critical for urban rail transit projects in complex geological settings, yet existing cross-section models often lack accuracy. This study proposes an enhanced non-uniform convergence model based on stochastic medium theory, which decomposes surface settlement into uniform soil shrinkage and non-uniform initial support deformation. A computational formula for horseshoe-shaped sections is derived and validated through field data from Kunming Rail Transit Phase I, demonstrating a 59% improvement in maximum settlement prediction accuracy (reducing error from 7.5 mm to 3.1 mm) compared to traditional methods. Its application to Beijing Metro Line 13 reveals two distinct deformation patterns: significant ground heave occurs at 2.5 times the tunnel width from the centerline, while maximum settlement concentrates above the excavation center and diminishes radially. To mitigate heave, early strengthening of the secondary lining is recommended to control initial horizontal deformation. These findings enhance prediction reliability and provide actionable insights for deformation control in similar urban tunneling projects, particularly under ultra-shallow burial conditions. Full article
Show Figures

Figure 1

20 pages, 7333 KiB  
Article
Experimental Simulation Investigation on Slab Buckling Rockburst in Deep Tunnel
by Chao Ren, Xiaoming Sun, Manchao He and Dongqiao Liu
Appl. Sci. 2025, 15(4), 1682; https://doi.org/10.3390/app15041682 - 7 Feb 2025
Cited by 1 | Viewed by 819
Abstract
The relationship between slabbing failure and rockburst has become a hot issue in rockburst research. In this paper, the experimental system of impact rockburst is used to conduct a simulation experiment of rockburst induced by slab failure on metamorphic sandstone samples taken from [...] Read more.
The relationship between slabbing failure and rockburst has become a hot issue in rockburst research. In this paper, the experimental system of impact rockburst is used to conduct a simulation experiment of rockburst induced by slab failure on metamorphic sandstone samples taken from the deep-buried horseshoe-shaped tunnel in Gaoloushan, with “pan-shaped” rockburst pits on site and laboratory simulation experiments, which prove the rationality of the experimental results of rockburst. The quantitative analysis of the displacement field in the process of the slab buckling rockburst is carried out, which shows that the slab structure will undergo a long period of gestation before its formation, and the formation of the slab structure will accelerate the occurrence of rockburst. This type of rockburst has attenuation characteristics in the process of rockburst; in addition, the phenomenon of “slab buckling circle” is found. The generation of the “slab buckling circle” and the formation of slab buckling cracks are inconsistent, which is a time-lagged fracture in engineering. The relationship between the rupture parameters of rockburst disaster rock mass and time shows a compound exponential growth relationship, revealing that the mechanism of the slab buckling rockburst can be regarded as the result of the combined action of shear crack and tension crack, which plays a leading role, reflecting the characteristic of progressive fracture development. It is a typical progressive fracture-induced instability rockburst model, which is a strain-lag rockburst. Full article
Show Figures

Figure 1

25 pages, 11685 KiB  
Article
Study on the Effect of Burial Depth on Selection of Optimal Intensity Measures for Advanced Fragility Analysis of Horseshoe-Shaped Tunnels in Soft Soil
by Tao Du, Tongwei Zhang, Shudong Zhou, Jinghan Zhang, Yi Zhang and Weijia Li
Symmetry 2024, 16(7), 859; https://doi.org/10.3390/sym16070859 - 7 Jul 2024
Cited by 2 | Viewed by 1666
Abstract
Seismic intensity measures (IMs) can directly affect the seismic risk assessment and the response characteristics of underground structures, especially when considering the key variable of burial depth. This means that the optimal seismic IMs must be selected to match the underground structure under [...] Read more.
Seismic intensity measures (IMs) can directly affect the seismic risk assessment and the response characteristics of underground structures, especially when considering the key variable of burial depth. This means that the optimal seismic IMs must be selected to match the underground structure under different buried depth conditions. In the field of seismic engineering design, peak ground acceleration (PGA) is widely recognized as the optimal IM, especially in the seismic design code for aboveground structures. However, for the seismic evaluation of underground structures, the applicability and effectiveness still face certain doubts and discussions. In addition, the adverse effects of earthquakes on tunnels in soft soil are particularly prominent. This study aims to determine the optimal IMs applicable to different burial depths for horseshoe-shaped tunnels in soft soil using a nonlinear dynamic time history analysis method, and based on this, establish the seismic fragility curves that can accurately predict the probability of tunnel damage. The nonlinear finite element analysis model for the soil–tunnel interaction system was established. The effects of different burial depths on damage to horseshoe-shaped tunnels in soft soil were systematically studied. By adopting the incremental dynamic analysis (IDA) method and assessing the correlation, efficiency, practicality, and proficiency of the potential IMs, the optimal IMs were determined. The analysis indicates that PGA emerges as the optimal IM for shallow tunnels, whereas peak ground velocity (PGV) stands as the optimal IM for medium-depth tunnels. Furthermore, for deep tunnels, velocity spectral intensity (VSI) emerges as the optimal IM. Finally, the seismic fragility curves for horseshoe-shaped tunnels in soft soil were built. The proposed fragility curves can provide a quantitative tool for evaluating seismic disaster risk, and are of great significance for improving the overall seismic resistance and disaster resilience of society. Full article
(This article belongs to the Special Issue Symmetry in Civil Transportation Engineering)
Show Figures

Figure 1

13 pages, 1540 KiB  
Article
NSGA–III–XGBoost-Based Stochastic Reliability Analysis of Deep Soft Rock Tunnel
by Jiancong Xu, Chen Sun and Guorong Rui
Appl. Sci. 2024, 14(5), 2127; https://doi.org/10.3390/app14052127 - 4 Mar 2024
Cited by 5 | Viewed by 1620
Abstract
How to evaluate the reliability of deep soft rock tunnels under high stress is a very important problem to be solved. In this paper, we proposed a practical stochastic reliability method based on the third-generation non-dominated sorting genetic algorithm (NSGA–III) and eXtreme Gradient [...] Read more.
How to evaluate the reliability of deep soft rock tunnels under high stress is a very important problem to be solved. In this paper, we proposed a practical stochastic reliability method based on the third-generation non-dominated sorting genetic algorithm (NSGA–III) and eXtreme Gradient Boosting (XGBoost). The proposed method used the Latin hypercube sampling method to generate the dataset samples of geo-mechanical parameters and adopted XGBoost to establish the model of the nonlinear relationship between displacements and surrounding rock mechanical parameters. And NSGA–III was used to optimize the surrogate model hyper-parameters. Finally, the failure probability was computed by the optimized surrogate model. The proposed approach was firstly implemented in the analysis of a horseshoe-shaped highway tunnel to illustrate the efficiency of the approach. Then, in comparison to the support vector regression method and the back propagation neural network method, the feasibility, validity and advantages of XGBoost were demonstrated for practical problems. Using XGBoost to achieve Monte Carlo simulation, a surrogate solution can be provided for numerical simulation analysis to overcome the time-consuming reliability evaluation of initial support structures in soft rock tunnels. The proposed method can evaluate quickly the large deformation disaster risks of non-circular deep soft rock tunnels. Full article
Show Figures

Figure 1

15 pages, 4235 KiB  
Article
A Study on the Transient Response of Compressed Air Energy Storage in the Interaction between Gas Storage Chambers and Horseshoe-Shaped Tunnels in an Abandoned Coal Mine
by Fuqing Li, Fufeng Li, Rui Sun, Jianjie Zheng, Xiaozhao Li, Lan Shen, Qiang Sun, Ying Liu, Yukun Ji and Yinhang Duan
Energies 2024, 17(4), 953; https://doi.org/10.3390/en17040953 - 19 Feb 2024
Cited by 3 | Viewed by 1759
Abstract
This study focuses on the renovation and construction of compressed air energy storage chambers within abandoned coal mine roadways. The transient mechanical responses of underground gas storage chambers under a cycle are analyzed through thermal-solid coupling simulations. These simulations highlight changes in key [...] Read more.
This study focuses on the renovation and construction of compressed air energy storage chambers within abandoned coal mine roadways. The transient mechanical responses of underground gas storage chambers under a cycle are analyzed through thermal-solid coupling simulations. These simulations highlight changes in key parameters such as displacement, stress, and temperature within the chamber group during the loading and unloading processes of compressed air energy storage. It is found that within a cycle, the small circular chamber experiences the most significant deformation, with an average peak displacement of 0.24 mm, followed by the large circular chamber and horseshoe-shaped tunnels. The small circular chamber exhibits maximum tensile and compressive stresses. Therefore, special attention in engineering practice should be paid to the long-term safety and stability of small circular tunnels, and the stability of horseshoe-shaped tunnels should be also carefully considered. The findings from this study offer some insights for theoretical support and practical implementation in the planning, design, construction, and operation of high-pressure underground gas storage chambers for compressed air energy storage. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

28 pages, 19285 KiB  
Article
Solving Conformal Mapping Issues in Tunnel Engineering
by Wenbo Chen, Dingli Zhang, Qian Fang, Xuanhao Chen and Lin Yu
Symmetry 2024, 16(1), 86; https://doi.org/10.3390/sym16010086 - 10 Jan 2024
Cited by 3 | Viewed by 2664
Abstract
The calculation of conformal mapping for irregular domains is a crucial step in deriving analytical and semi-analytical solutions for irregularly shaped tunnels in rock masses using complex theory. The optimization methods, iteration methods, and the extended Melentiev’s method have been developed and adopted [...] Read more.
The calculation of conformal mapping for irregular domains is a crucial step in deriving analytical and semi-analytical solutions for irregularly shaped tunnels in rock masses using complex theory. The optimization methods, iteration methods, and the extended Melentiev’s method have been developed and adopted to calculate the conformal mapping function in tunnel engineering. According to the strict definition and theorems of conformal mapping, it is proven that these three methods only map boundaries and do not guarantee the mapping’s conformal properties due to inherent limitations. Notably, there are other challenges in applying conformal mapping to tunnel engineering. To tackle these issues, a practical procedure is proposed for the conformal mapping of common tunnels in rock masses. The procedure is based on the extended SC transformation formulas and corresponding numerical methods. The discretization codes for polygonal, multi-arc, smooth curve, and mixed boundaries are programmed and embedded into the procedure, catering to both simply and multiply connected domains. Six cases of conformal mapping for typical tunnel cross sections, including rectangular tunnels, multi-arc tunnels, horseshoe-shaped tunnels, and symmetric and asymmetric multiple tunnels at depth, are performed and illustrated. Furthermore, this article also illustrates the use of the conformal mapping method for shallow tunnels, which aligns with the symmetry principle of conformal mapping. Finally, the discussion highlights the use of an explicit power function as an approximation method for symmetric tunnels, outlining its key points. Full article
(This article belongs to the Special Issue Symmetry in Civil Transportation Engineering)
Show Figures

Figure 1

22 pages, 5423 KiB  
Article
Assessment Method Integrating Visibility and Toxic Gas for Road Tunnel Fires Using 2D Maps for Identifying Risks in the Smoke Environment
by Huei-Ru Hsieh, Hung-Chieh Chung, Nobuyoshi Kawabata, Miho Seike, Masato Hasegawa, Shen-Wen Chien and Tzu-Sheng Shen
Fire 2023, 6(4), 173; https://doi.org/10.3390/fire6040173 - 21 Apr 2023
Cited by 2 | Viewed by 2685
Abstract
This study proposes an assessment method to quantify the risks of the smoke environment for road tunnel fire safety based on previous studies. The assessment method integrates visibility and toxic gases to address the hazards of smoke distribution more comprehensively. Considering that the [...] Read more.
This study proposes an assessment method to quantify the risks of the smoke environment for road tunnel fire safety based on previous studies. The assessment method integrates visibility and toxic gases to address the hazards of smoke distribution more comprehensively. Considering that the hazards of visibility reduction and toxic gases for tunnel users vary with exposure time and location in a fire event, the smoke environment (SE) levels are defined as a function of longitudinal location and time. The SE levels simplify smoke distribution as calculated from 3D computational fluid dynamics (CFDs). For easily identifying SE risks, SE levels are illustrated on a 2D map to analyze the potential hazard by quantifying specific areas and times of smoke exposure. To demonstrate the applicability of the assessment method of this study, cases are carried out using CFD simulation to investigate the risks associated with tunnel fires with various tunnel cross-section types, longitudinal velocities, and gradients. In the analysis of the SE level in different cross-section types and longitudinal velocities under the condition of no vehicle, a velocity of 0.9–1.1 m/s can maintain a less serious SE level both upstream and downstream in a horizontal rectangular tunnel, and 0.3–0.5 m/s in a horizontal horseshoe-shaped tunnel. Both rectangular and horseshoe-shaped tunnels reveal an obvious rise within 10–15 min. In the case of inclined tunnels, for both rectangular and horseshoe-shaped tunnels, the SE level near the fire source obviously deteriorates. Thus, the longitudinal velocity range for the purpose of maintaining a relatively less serious SE level should be slightly reduced for inclined tunnels compared with horizontal tunnels. Full article
(This article belongs to the Special Issue Advance in Tunnel Fire Research)
Show Figures

Figure 1

14 pages, 10395 KiB  
Article
The Influence of Cross-Section Shape on Failure of Rock Surrounding the Main Tunnel in a Water-Sealed Cavern
by Yu Cong, Heyi Liu, Xiaoshan Wang, Defu Guo, Liliang Han, Yi Zhao and Lilei Zou
Sustainability 2023, 15(1), 424; https://doi.org/10.3390/su15010424 - 27 Dec 2022
Cited by 1 | Viewed by 1896
Abstract
The influence of cross-section shape on rock stability was investigated by designing a similar model test and numerical simulation using particle flow code (PFC). The test results showed that the left- and right-hand sides of the entrance are subjected to tension, mainly forming [...] Read more.
The influence of cross-section shape on rock stability was investigated by designing a similar model test and numerical simulation using particle flow code (PFC). The test results showed that the left- and right-hand sides of the entrance are subjected to tension, mainly forming vertical cracks or oblique cracks with a large dip angle. The vicinity of the entrance is subjected to the shear effect and the overall failure of the model is brittle in the similar test. Mesoscopic fractures mainly appear as tensile fractures, and a small number of shear fractures are found in the vicinity of the entrance. A long narrow coalescent-fracture zone is separately formed at the left- and right-hand sides of the entrance when approaching peak load in PFC test. Stress concentration occurs at the end of the long axis of the elliptic cross-section. The stress is high at the arch foot and spandrel of a horseshoe-shaped cross-section and a coalescent fracture zone formed at the arch foot on the right-hand side caused the tunnel to fail. The ovoid-shaped and vertical-wall-arched cross-sections are under significant tension, owing to the force chains distributed along the tunnel wall, show a large included angle with the tunnel wall. From the perspective of bearing capacity, a circle is the best section. From the perspective of failure mode, the horseshoe-shaped section is more suitable for use in corresponding practical engineering. Full article
(This article belongs to the Special Issue Deep Mining Engineering in Sustainability)
Show Figures

Figure 1

18 pages, 13358 KiB  
Article
Model Test on Effect of Ground Fissure on the Behavior of Oblique Two-Section Subway Tunnel
by Lei Liu, Tao Ma, Jin-Kai Yan and Zhi-Hui Wang
Appl. Sci. 2022, 12(20), 10472; https://doi.org/10.3390/app122010472 - 17 Oct 2022
Cited by 1 | Viewed by 1408
Abstract
The dynamic interaction between the ground fissure and an oblique two-section horseshoe-shaped subway tunnel under the subway dynamic load was investigated based on a series of model tests in this study. The results indicated that the subway subway-induced vibration attenuated in different degrees [...] Read more.
The dynamic interaction between the ground fissure and an oblique two-section horseshoe-shaped subway tunnel under the subway dynamic load was investigated based on a series of model tests in this study. The results indicated that the subway subway-induced vibration attenuated in different degrees when propagating in the directions in the soil layer, while the ground fissure had an attenuation effect on subway vibration. Furthermore, the vibration of the soil layer below the tunnel near the ground fissure was stronger than that of the upper soil layer, and the vibration response at the tunnel bottom was stronger than that of the arch waist and the tunnel crown. The additional contact pressure between the tunnel bottom and the soil was relatively large when the ground fissure was not active, while the additional strain at the top and bottom of the tunnel caused by the excitation was small. Moreover, when the hanging wall of the ground fissure descended, the additional contact pressure at the tunnel crown in the hanging wall and the tunnel bottom in the footwall significantly increased, and a negative additional stain was identified at those two positions. Meanwhile, a positive additional stain was identified at the tunnel crown in the footwall and the tunnel crown in the hanging wall, increasing with the descent of the hanging wall. Full article
(This article belongs to the Special Issue Pile Foundation Analysis and Design)
Show Figures

Figure 1

17 pages, 5795 KiB  
Article
Mechanical Behaviors of Existing Large-Diameter Tunnel Induced by Horseshoe-Shaped Undercrossing Twin Tunnels in Gravel
by Jianye Li, Qian Fang, Xiang Liu, Jianming Du, Gan Wang and Jun Wang
Appl. Sci. 2022, 12(14), 7344; https://doi.org/10.3390/app12147344 - 21 Jul 2022
Cited by 9 | Viewed by 2512
Abstract
This article investigates and presents a case study on the Beijing Subway Line 12 excavation beneath the existing Qinghuayuan Tunnel. The composite pre-reinforcement technique was used in conjunction with the shallow tunneling method to control the distortion of the existing large-diameter tunnel. When [...] Read more.
This article investigates and presents a case study on the Beijing Subway Line 12 excavation beneath the existing Qinghuayuan Tunnel. The composite pre-reinforcement technique was used in conjunction with the shallow tunneling method to control the distortion of the existing large-diameter tunnel. When building twin tunnels underneath, this strategy considerably decreased the impact on the existing large-diameter tunnel. To systematically study the mechanical response of the existing large-diameter tunnel, a variety of sensors was embedded in the prefabricated segments just above the new twin tunnels. During the undercrossing twin tunnels procedure, the earth pressure, tunnel crown settlement, opening width of the segment joint, and the circumferential strain of the large-diameter existing tunnel were all measured. The settlement development of the existing large-diameter tunnel was categorized under six stages: (1) sedimentation, (2) heave, (3) second sedimentation, (4) second heave, (5) third sedimentation, and (6) steady state. The joint opening of the existing large-diameter tunnel changed sharply during the new undercrossing twin tunnels. The earth pressure and concrete stress of the linings rapidly increased during the new undercrossing twin tunnels. The majority of the reinforcement and concrete stresses were compressive and far lower than the yield strength, indicating that the tunnel was in a safe working condition. Full article
(This article belongs to the Special Issue Deep Rock Mass Engineering: Excavation, Monitoring, and Control)
Show Figures

Figure 1

29 pages, 74483 KiB  
Article
Behaviour of Horseshoe-Shaped Tunnel Subjected to Different In Situ Stress Fields
by Wael R. Abdellah, Abdel Kader A. Haridy, Abdou Khalaf Mohamed, Jong-Gwan Kim and Mahrous A. M. Ali
Appl. Sci. 2022, 12(11), 5399; https://doi.org/10.3390/app12115399 - 26 May 2022
Cited by 7 | Viewed by 5027
Abstract
At great depths, tunnel openings experience a tectonic stress field rather than overburden stress. This paper aims to examine the impact of different in situ stress ratios and multiple tunnel depths below the surface on the excavation induced-stresses and displacements around tunnel openings. [...] Read more.
At great depths, tunnel openings experience a tectonic stress field rather than overburden stress. This paper aims to examine the impact of different in situ stress ratios and multiple tunnel depths below the surface on the excavation induced-stresses and displacements around tunnel openings. Thus, a series of models has been built, using a two-dimensional elasto-plastic finite-elements code, RS2D, to conduct parametric stability analysis. The performance of tunnel opening is examined by evaluating the induced stress-deformation around the opening. The results indicate that ratio of wall convergence, roof sag and floor heave increase as in situ stress ratio and tunnel depth below surface increase. Additionally, the induced-stresses increase as depth and state of in situ stress increase. In addition, the extent of yielding zones into rock mass around tunnel roof and floor deteriorates as tunnel depth and in situ stress ratio increase. Moreover, the normal stress along rock joints is sharply dropped when joints pass in the vicinity of tunnel opening (e.g., centre of opening). As well, the direction of shear stress along joints is reversed. Consequently, inward shear displacement of rock, on the underside of the weakness plane, is produced as a result of slip occurrence. Full article
(This article belongs to the Special Issue Advances in Developing Underground)
Show Figures

Figure 1

17 pages, 5279 KiB  
Article
Ground Settlement Due to Tunneling in Cohesionless Soil
by Mohammad Faraz Athar, Md Rehan Sadique, Abdullah H. Alsabhan and Shamshad Alam
Appl. Sci. 2022, 12(7), 3672; https://doi.org/10.3390/app12073672 - 6 Apr 2022
Cited by 5 | Viewed by 4087
Abstract
By the year 2035 it is estimated that Delhi and Mumbai will become two of the most populous cities around the globe. The massive population growth rate has led to the rise of land scarcity, urbanization, and industrialization and developments for rapid transit [...] Read more.
By the year 2035 it is estimated that Delhi and Mumbai will become two of the most populous cities around the globe. The massive population growth rate has led to the rise of land scarcity, urbanization, and industrialization and developments for rapid transit systems have made accordingly. Modern rapid transit systems comprise Metro rails and subways etc., and increase underground-construction activities. Nowadays, the tunnel-construction process heavily relies on massive machineries such as tunnelling-boring machines (TBM) and operations that produce great hindrance in the soil mass resulting in ground settlement at the surface. This study aimed to address these issues through small-scale laboratory experiments and further amplification to real-valued problems utilizing numerical methods. A cubic box of edge length 1 m made up of mild steel was generated to simulate a tunnelling operation and aluminum-made lining were used to simulate concrete tunnel linings. A finite element-based numerical investigation was done for a 2D elastoplastic numerical tunnel model with dimensions of 42 m × 42 m. Analysis was carried out on Optum G2 software. The analyzed variations in lining shapes of lining included circular, horseshoe, arch, elliptical, and square. Results showed that elliptical-shaped linings experienced the least ground settlement and these are recommended for places where surface settlement may cause major damage. It is also recommended that square-shaped linings should not be used in such situations due their higher settlement values. Full article
(This article belongs to the Special Issue Tunneling and Underground Engineering: From Theories to Practices)
Show Figures

Figure 1

30 pages, 16237 KiB  
Article
Rock Mass Behavior under Tunnel Widening in Asymmetric and Symmetric Modes Considering Different Shapes and Parametric Conditions
by Babar Khan, Syed Muhammad Jamil, Jung Joo Kim, Turab H. Jafri and Jonguk Kim
Geosciences 2019, 9(12), 518; https://doi.org/10.3390/geosciences9120518 - 16 Dec 2019
Viewed by 6416
Abstract
To accommodate traffic volume on roads due to ever-increasing population growth, the widening of highways and motorways is in high demand. Nevertheless, the widening of tunnels on these road networks is quite complex due to the presence of numerous rock types, in situ [...] Read more.
To accommodate traffic volume on roads due to ever-increasing population growth, the widening of highways and motorways is in high demand. Nevertheless, the widening of tunnels on these road networks is quite complex due to the presence of numerous rock types, in situ stress, and different widening modes. To overcome these complexities, eight different tunnel shapes were simulated under varying support conditions for asymmetric and symmetric widening. It was found that the tunnels with a round shape, such as horseshoe and semicircular with flatbed, are more effective for asymmetric widening, whereas the provision of a rounded invert in these shapes can reverse the widening option to symmetric. Furthermore, an insignificant effect of the difference in asymmetric and symmetric widening of regular tunnel shapes, such as box, rectangular, and semi-elliptical, was found. A full factorial design statistical analysis confirmed the decrease in tunnel deformation by using various tunnel support systems and showed a significant deformation difference according to monitoring locations at the tunnel periphery. The deformation difference in the case of both tunnel widening modes was also analyzed according to different design parameters. This study provides a comprehensive understanding of rock mass behavior when the widening of any underground opening is carried out. Full article
Show Figures

Figure 1

27 pages, 11387 KiB  
Article
The Hydrodynamic Noise Suppression of a Scaled Submarine Model by Leading-Edge Serrations
by Yongwei Liu, Yalin Li and Dejiang Shang
J. Mar. Sci. Eng. 2019, 7(3), 68; https://doi.org/10.3390/jmse7030068 - 15 Mar 2019
Cited by 11 | Viewed by 4457
Abstract
High hydrodynamic noise is a threat to the survival of underwater vehicles. We investigated a noise suppression mechanism by putting leading-edge serrations on the sail hull of a scaled SUBOFF model, through numerical calculation and an experimental test. We found that the cone [...] Read more.
High hydrodynamic noise is a threat to the survival of underwater vehicles. We investigated a noise suppression mechanism by putting leading-edge serrations on the sail hull of a scaled SUBOFF model, through numerical calculation and an experimental test. We found that the cone shape of leading-edge serrations can decrease the intensity of the adverse pressure gradient and produce counter-rotation vortices, which destroy the formation of the horseshoe vortex and delay the tail vortex. To achieve the optimum hydrodynamic noise reduction, we summarized the parameters of leading-edge serrations. Then, two steel models were built, according to the simulation. We measured the hydrodynamic noise based on the reverberation method in a gravity water tunnel. The numerically calculated results were validated by the experimental test. The results show that leading-edge serrations with amplitudes of 0.025c and wavelengths of 0.05h can obtain hydrodynamic noise reduction of at least 6 dB, from 10 Hz to 2 kHz, where c is the chord length and h is the height of the sail hull. The results in our study suggest a new way to design underwater vehicles with low hydrodynamic noise at a high Reynolds number. Full article
(This article belongs to the Special Issue Underwater Technology—Hydrodynamics and Control System)
Show Figures

Figure 1

26 pages, 15987 KiB  
Article
Suppression of the Hydrodynamic Noise Induced by the Horseshoe Vortex through Mechanical Vortex Generators
by Yongwei Liu, Hongxu Jiang, Yalin Li and Dejiang Shang
Appl. Sci. 2019, 9(4), 737; https://doi.org/10.3390/app9040737 - 20 Feb 2019
Cited by 4 | Viewed by 4612
Abstract
The hydrodynamic noise from the horseshoe vortex can greatly destroy the acoustic stealth of underwater vehicles at low frequency. We investigated the flow-induced noise suppression mechanism by mechanical vortex generators (VGs) on a SUBOFF model. Based on the numerical simulation, we calculated the [...] Read more.
The hydrodynamic noise from the horseshoe vortex can greatly destroy the acoustic stealth of underwater vehicles at low frequency. We investigated the flow-induced noise suppression mechanism by mechanical vortex generators (VGs) on a SUBOFF model. Based on the numerical simulation, we calculated the flow field and the sound field of the three shapes of mechanical VGs: triangular, semi-circular, and trapezoidal. The triangular VGs with an angle of 30° to the flow direction achieved a better noise reduction. The optimum noise suppression is 8.93 dB, when the distance from the triangular VGs to the sail hull’s leading edge is 0.1c, where c is the chord length. The noise reduction mechanism is such that the mechanical VGs can destroy the formation of the horseshoe vortex at the origin and produce counter-rotation vortices to weaken its intensity. We created two steel models according to the simulation, and the experimental measurement was carried out in a gravity water tunnel. The measured results showed that the formation of the horseshoe vortex could be effectively inhibited by the triangular VGs. The results in our study can provide a new method for hydrodynamic noise suppression by flow control. Full article
(This article belongs to the Special Issue Active and Passive Noise Control)
Show Figures

Figure 1

Back to TopTop