Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = high-sulphur fly ash

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9591 KiB  
Article
Influence of Steel and Poly Vinyl Alcohol Fibers on the Development of High-Strength Geopolymer Concrete
by Shaik Hussain, John Matthews, Sudhir Amritphale, Richard Edwards, Elizabeth Matthews, Niloy Paul and John Kraft
Minerals 2024, 14(10), 1007; https://doi.org/10.3390/min14101007 - 5 Oct 2024
Cited by 6 | Viewed by 1246
Abstract
The present study focuses on the mechanical performance of steel and polyvinyl alcohol fibers embedded in the geopolymer matrix. A high-strength geopolymer concrete with fly ash, slag and silica fume as precursors and sodium hydroxide and sodium silicate solutions as activators has been [...] Read more.
The present study focuses on the mechanical performance of steel and polyvinyl alcohol fibers embedded in the geopolymer matrix. A high-strength geopolymer concrete with fly ash, slag and silica fume as precursors and sodium hydroxide and sodium silicate solutions as activators has been tested for its strength in compression and flexure. The influence of fibers on flowability, long-term shrinkage and sulphuric acid attack on the geopolymer concrete has also been studied. The dosage of fibers was maintained at 1%, 2% and 3% by volume, and fibers of length 13 mm have been used in the study. Results indicate that slag with 3% steel fibers by volume had a predominant influence on the strength development of steel fiber-reinforced geopolymer concrete, yielding a compressive strength of 107 MPa after 28 days. Blast furnace slag resulted in increasing the shrinkage of concrete due to rapid gel formation owing to the presence of calcium ions, although the fibers helped reduce the shrinkage to some extent. The strength of steel fiber geopolymer concrete was superior to PVA fiber geopolymer concrete; however, after an acid attack, the strength of steel fiber geopolymer concrete was reduced more than PVA fiber geopolymer concrete due to the enhanced corrosion resistance of PVA fibers. Full article
(This article belongs to the Special Issue Geopolymers: Synthesis, Characterization and Application)
Show Figures

Figure 1

19 pages, 2003 KiB  
Article
Influence of Bentonite and Polypropylene Fibers on Geopolymer Concrete
by Rana Muhammad Waqas, Shahid Zaman, Mohammed K. Alkharisi, Faheem Butt and Eyad Alsuhaibani
Sustainability 2024, 16(2), 789; https://doi.org/10.3390/su16020789 - 17 Jan 2024
Cited by 10 | Viewed by 2558
Abstract
Bentonite is one of the SiO2-rich pozzolanic clay types that has been enormously employed as a cost-effective and eco-friendly supplementary cementitious material in ordinary Portland cement (OPC) concrete. However, the use of bentonite in geopolymer concrete (GPC) has not been explored [...] Read more.
Bentonite is one of the SiO2-rich pozzolanic clay types that has been enormously employed as a cost-effective and eco-friendly supplementary cementitious material in ordinary Portland cement (OPC) concrete. However, the use of bentonite in geopolymer concrete (GPC) has not been explored very widely. Further, the research available on the effect of utilizing treated bentonite in GPC is limited. The practical application of GPC is also very limited due to its significant shrinkage and high brittleness compared to OPC concrete. There are several studies available that have highlighted the use of polypropylene fibers (PPF) in improving the mechanical properties of GPC by reducing drying shrinkage and enhancing ductility. However, the effect of PPF on the durability properties of GPC needs to be addressed. Further, the effect of the combined integration of bentonite and PPF on the mechanical and durability properties of GPC has not been reported yet. The aim of this study is, therefore, to investigate the individual and combined effect of bentonite and PPF on the workability, mechanical properties, and durability of fly ash (FA)-based GPC. Bentonite replaced 10% of FA, and PPF was added at varying proportions (0.5%, 0.75%, and 1%) for raw and treated bentonite. Slump test was used to assess workability, while compressive, tensile, and flexural tests were utilized to evaluate the mechanical properties. Water absorption, acid attack, and abrasion resistance tests were used to evaluate durability. The results showed that bentonite and PPF significantly enhance mechanical properties, especially when combined with treated bentonite, with the highest improvement observed for mixtures with 1% PPF. The compressive strength was improved by an extent of 10% and 18% for raw bentonite-GPC and treated bentonite-GPC, respectively, compared to the control mix without bentonite. The durability test results revealed that water absorption of raw and treated bentonite-GPC mixtures at the age of 90 days was decreased by 16% and 21%, respectively, compared to the control mix (without bentonite). The mass loss of raw and treated bentonite-GPC mixtures in sulphuric acid solution was 5% and 10% lower, respectively, than the control mix (without bentonite). The mass loss of raw and treated bentonite-GPC mixtures in abrasion resistance tests was 6% and 12% lower, respectively, than the control mix (without bentonite). For durability performance, mixtures with 0.5% PPF perform the best, while higher PPF contents negatively impact the GPC durability. Full article
Show Figures

Figure 1

21 pages, 8252 KiB  
Article
Effective Microorganism Solution and High Volume of Fly Ash Blended Sustainable Bio-Concrete
by Ghasan Fahim Huseien, Ali Taha Saleh and Sib K. Ghoshal
Biomimetics 2022, 7(2), 65; https://doi.org/10.3390/biomimetics7020065 - 23 May 2022
Cited by 4 | Viewed by 3671
Abstract
Currently, the production of sustainable concrete with high strength, durability, and fewer environmental problems has become a priority of concrete industries worldwide. Based on this fact, the effective microorganism (EM) solution was included in the concrete mixtures to modify the engineering properties. Concrete [...] Read more.
Currently, the production of sustainable concrete with high strength, durability, and fewer environmental problems has become a priority of concrete industries worldwide. Based on this fact, the effective microorganism (EM) solution was included in the concrete mixtures to modify the engineering properties. Concrete specimens prepared with 50% fly ash (FA) as an ordinary Portland cement (OPC) replacement were considered as the control sample. The influence of EM solution inclusion (at various contents of 0, 5, 10, 15, 20, and 25% weight) in the cement matrix as water replacement was examined to determine the optimum ratio that can enhance the early and late strength of the proposed bio-concrete. The compressive strength, porosity, carbonation depth, resistance to sulphuric acid attack, and the environmental benefits of the prepared bio-concrete were evaluated. The results showed that the mechanical properties and durability performance of the bio-concrete were improved due to the addition of EM and FA. Furthermore, the inclusion of 10% EM could increase the compressive strength of the bio-concrete at 3 (early) and 28 days by 42.5% and 14.6%, respectively. The durability performance revealed a similar trend wherein the addition of 50% FA and 10% EM into the bio-concrete could improve its resistance against acid attack by 35.1% compared to the control specimen. The concrete mix designed with 10% EM was discerned to be optimum, with approximately 49.3% lower carbon dioxide emission compared to traditional cement. Full article
Show Figures

Figure 1

27 pages, 10968 KiB  
Article
Drying Shrinkage, Sulphuric Acid and Sulphate Resistance of High-Volume Palm Oil Fuel Ash-Included Alkali-Activated Mortars
by Ghasan Fahim Huseien, Mohammad Ali Asaad, Aref A. Abadel, Sib Krishna Ghoshal, Hussein K. Hamzah, Omrane Benjeddou and Jahangir Mirza
Sustainability 2022, 14(1), 498; https://doi.org/10.3390/su14010498 - 4 Jan 2022
Cited by 14 | Viewed by 3199
Abstract
Nowadays, an alkali-activated binder has become an emergent sustainable construction material as an alternative to traditional cement and geopolymer binders. However, high drying shrinkage and low durability performance in aggressive environments such as sulphuric acid and sulphate are the main problems of alkali-activated [...] Read more.
Nowadays, an alkali-activated binder has become an emergent sustainable construction material as an alternative to traditional cement and geopolymer binders. However, high drying shrinkage and low durability performance in aggressive environments such as sulphuric acid and sulphate are the main problems of alkali-activated paste, mortar and concrete. Based on these factors, alkali-activated mortar (AAM) binders incorporating high-volume palm oil fuel ash (POFA), ground blast furnace slag (GBFS) and fly ash (FA) were designed to enhance their durability performance against aggressive environments. The compressive strength, drying shrinkage, loss in strength and weight, as well as the microstructures of these AAMs were evaluated after exposure to acid and sulphate solutions. Mortars made with a high volume of POFA showed an improved durability performance with reduced drying shrinkage compared to the control sample. Regarding the resistance against aggressive environments, AAMs with POFA content increasing from 0 to 70% showed a reduced loss in strength from 35 to 9% when subjected to an acid attack, respectively. Additionally, the results indicated that high-volume POFA binders with an increasing FA content as a GBFS replacement could improve the performance of the proposed mortars in terms of durability. It is asserted that POFA can significantly contribute to the cement-free industry, thus mitigating environmental problems such as carbon dioxide emission and landfill risks. Furthermore, the use of POFA can increase the lifespan of construction materials through a reduction in the deterioration resulting from shrinkage problems and aggressive environment attacks. Full article
(This article belongs to the Special Issue Alkali-Activated Concrete: A State of Art)
Show Figures

Figure 1

15 pages, 7046 KiB  
Article
Undissolved Ilmenite Mud from TiO2 Production—Waste or a Valuable Addition to Portland Cement Composites?
by Filip Chyliński, Jan Bobrowicz and Paweł Łukowski
Materials 2020, 13(16), 3555; https://doi.org/10.3390/ma13163555 - 12 Aug 2020
Cited by 10 | Viewed by 3588
Abstract
This paper presents a method of utilising ilmenite MUD created during the production of titanium dioxide (TiO2) according to the sulphate method as an additive for Portland cement composites. After the production process, undissolved MUD was additionally rinsed with water and [...] Read more.
This paper presents a method of utilising ilmenite MUD created during the production of titanium dioxide (TiO2) according to the sulphate method as an additive for Portland cement composites. After the production process, undissolved MUD was additionally rinsed with water and filtrated in the factory to make it more useful (R-MUD) for implementation and also to turn back some of the by-products of the production of TiO2. R-MUD is less hazardous waste than MUD. It has a lower concentration of sulphuric acid and some heavy metals. The rinsing process raised the concentration of SiO2, which is a valuable part of R-MUD because of its potential pozzolanic activity. This means that the R-MUD might be a reactive substitute of part of Portland cement in building composites. The article presents the results of research on the pozzolanic activity of R-MUD and other materials with proved pozzolanic activity, such as silica fume, fly ash and natural pozzolana (trass). Tests were performed using thermal analysis techniques. The tests showed that the pozzolanic activity or R-MUD after three days is at the same level as silica fume and after 28 days it is twice as high as the activity of fly ash. Beyond the 180th day of curing, R-MUD had the same level of activity as fly ash. The summary is supplemented by calorimetric tests, which confirm the high reactivity of R-MUD compared to other commonly used concrete additives, already in the initial hydration period. In summary, heat of hydration after 72 h of Portland cement with R-MUD is at the same level as the heat of hydration of Portland cement with silica fume and also pure Portland cement grout. The results confirm that the process of formation of micro-silica contained in R-MUD react with calcium hydroxide to form the C-S-H phase, which is responsible for the microstructure of cement composites. Full article
(This article belongs to the Collection Concrete and Building Materials)
Show Figures

Figure 1

16 pages, 4745 KiB  
Article
Influences of High-Sulphur Fly Ash on the Properties of Lightweight Cement-Treated Materials Subjected to Sulphate Corrosion
by Xiaoyuan Wang, Pengju Han, Xiaoqiang Dong, Xiangyu Li, Xiaohong Bai, Bin He, Shiwei Niu and Funan Sun
Appl. Sci. 2020, 10(15), 5217; https://doi.org/10.3390/app10155217 - 29 Jul 2020
Cited by 4 | Viewed by 2793
Abstract
In this study, the effects of high-sulphur fly ash on the properties of lightweight cement-treated materials (LCMs) immersed in sodium sulphate solutions were studied. The unconfined compressive strength of LCMs corroded by sulphate was tested. The microscopic properties were characterised by X-ray diffraction [...] Read more.
In this study, the effects of high-sulphur fly ash on the properties of lightweight cement-treated materials (LCMs) immersed in sodium sulphate solutions were studied. The unconfined compressive strength of LCMs corroded by sulphate was tested. The microscopic properties were characterised by X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The results show that high-sulphur fly ash has an adverse effect on the structural strength of LCMs after corrosion, but when the content of fly ash is less than 75%, the effect of fly ash on the strength is small. A small amount of high-sulphur fly ash can improve the density of the material structure; the internal pore structure of LCMs provides space for the growth of ettringite and other corrosive substances and relieves the expansion pressure. LCMs mixed with high-sulphur fly ash have a certain resistance to sodium sulphate corrosion. Full article
(This article belongs to the Special Issue Innovative Building Materials)
Show Figures

Figure 1

20 pages, 6037 KiB  
Article
Recycling and Application of Mine Tailings in Alkali-Activated Cements and Mortars—Strength Development and Environmental Assessment
by Nuno Cristelo, João Coelho, Mafalda Oliveira, Nilo Cesar Consoli, Ángel Palomo and Ana Fernández-Jiménez
Appl. Sci. 2020, 10(6), 2084; https://doi.org/10.3390/app10062084 - 19 Mar 2020
Cited by 25 | Viewed by 4532
Abstract
Mine tailings (MT) could represent a step forward in terms of the quality of the aggregates usually used in civil engineering applications, mostly due to its high density. The Portuguese Neves Corvo copper mine, owned by the Lundin Mining Corporation, produces approximately 3 [...] Read more.
Mine tailings (MT) could represent a step forward in terms of the quality of the aggregates usually used in civil engineering applications, mostly due to its high density. The Portuguese Neves Corvo copper mine, owned by the Lundin Mining Corporation, produces approximately 3 million tonnes per year. Nevertheless, it cannot be used in its original state, due to its high levels of sulphur and other metals (As, Cr, Cu, Pb, Zn). This paper focuses on the stabilisation/solidification of high-sulphur MT, without any previous thermal treatment, using alkali-activated fly ash (FA). The variables considered were the MT/FA ratio and the activator type and concentration. A fine aggregate was then added to the pastes to assess the quality of the resulting mortar. Maximum compressive strengths of 14 MPa and 24 MPa were obtained for the pastes and mortars, respectively, after curing for 24 h at 85 °C. Thermogravimetric analysis, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray diffraction, and infrared spectroscopy were used to characterize the reaction products, and two types of leaching tests were performed to assess the environmental performance. The results showed that the strength increase is related with the formation of a N-A-S-H gel, although sodium sulphate carbonate was also developed, suggesting that the total sodium intake could be optimized without strength loss. The solubility of the analysed metals in the paste with 78% MT and 22% FA was below the threshold for non-hazardous waste. Full article
(This article belongs to the Special Issue Recycling Waste in Construction Materials)
Show Figures

Figure 1

Back to TopTop