Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = high-speed long rod

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15427 KiB  
Article
Research on the Process of Laser Cladding Ni60 Coating on High-Nickel Cast Iron Surfaces
by Shunhu Chen, Aixin Feng, Chunlun Chen and Xiangyu Song
Processes 2024, 12(4), 647; https://doi.org/10.3390/pr12040647 - 24 Mar 2024
Cited by 3 | Viewed by 1793
Abstract
In order to achieve high-performance coatings on the surface of electric submersible pump impellers, it is crucial to optimize the laser cladding process parameters. Using Ansys 2021 R1 commercial software, a numerical simulation of laser cladding Ni60 powder on high nickel cast iron [...] Read more.
In order to achieve high-performance coatings on the surface of electric submersible pump impellers, it is crucial to optimize the laser cladding process parameters. Using Ansys 2021 R1 commercial software, a numerical simulation of laser cladding Ni60 powder on high nickel cast iron was conducted. The simulation utilized a 3D Gaussian heat source, parametric language, and life–death unit technology to replicate the characteristics of synchronous powder delivery laser cladding. The study focused on analyzing the temperature field cloud map and molten pool size under different laser power and scanning speeds, narrowing down the process parameter window, selecting optimized laser power and scanning speed, and assessing the changes in surface morphology, melting height and width, dilution rate, microhardness, and microstructure of the laser cladding coating. Results indicate that the coating width and thickness increase with higher laser power and lower scanning speeds. The microstructure consists primarily of dendritic, block, short rod, and long strip formations, and exhibits a tightly distributed and uniform grain structure. Furthermore, the microhardness of the coating shows a negative correlation with laser power and scanning speed. The optimal process parameters were determined to be a laser power of 1100 W and a scanning speed of 6 mm/s. A comparison with the simulation confirmed the effectiveness of the simulation in effectively guiding actual production. Full article
(This article belongs to the Special Issue Microstructure, Processing and Numerical Simulation of Coatings)
Show Figures

Figure 1

22 pages, 8022 KiB  
Article
Long Short-Term Memory Network for Predicting Wind-Induced Vibration Response of Lightning Rod Structures
by Guifeng Zhao, Kaifeng Xing, Yang Wang, Hui Qian and Meng Zhang
Buildings 2023, 13(5), 1256; https://doi.org/10.3390/buildings13051256 - 10 May 2023
Cited by 3 | Viewed by 1966
Abstract
Lightning rod structures are susceptible to wind loads due to their high slenderness ratio, high flexibility, and light weight. The wind-induced dynamic response of a lightning rod is critical for structural safety and reliability. The traditional methods for this response, including observation and [...] Read more.
Lightning rod structures are susceptible to wind loads due to their high slenderness ratio, high flexibility, and light weight. The wind-induced dynamic response of a lightning rod is critical for structural safety and reliability. The traditional methods for this response, including observation and simulation, focus on structural health monitoring (SHM), wind tunnel tests (WTTs), or fluid–structure interaction (FSI) simulations. However, all these approaches require considerable financial or computational investment. Additionally, problems such as data loss or data anomalies in the sensor monitoring process often occur during SHM or WTTs. This paper proposes an algorithm based on a long short-term memory (LSTM) network to predict the wind-induced dynamic response and to solve the problem of data link fracture caused by abnormal sensor data transmission or wind-induced damage to lightning rod structures under different wind speeds. The effectiveness and applicability of the proposed framework are demonstrated using actual monitoring data. Root-mean-squared error (RMSE), determination of coefficient (R2), variance accounted for (VAF), and the refined Willmott index (RWI) are employed as performance assessment indices for the proposed network model. At the same time, the random forest algorithm is adopted to analyze the correlation between the data of the different measurement points on the lightning rod structure. The results show that the LSTM method proposed in this paper has a high accuracy for the prediction of “missing” strain data during lightning rod strain monitoring under wind speeds of 15.81~31.62 m/s. Even under the extreme wind speed of 31.62 m/s, the values of RMSE, MAE, R2, RWI and VAF are 0.24053, 0.18213, 0.94539, 0.88172 and 0.94444, respectively, which are within the acceptable range. Using the data feature importance analysis function, it is found that the predicted strain data of the measurement point on the top part of the lightning rod structure are closely related to the test strain data of the two adjacent sections of the structure, and the effect of the test strain data of the measurement points that are far from the predicted measurement point can be ignored. Full article
Show Figures

Figure 1

23 pages, 10311 KiB  
Article
Structural Optimization Design and Strength Test Research of Connecting Rod Assembly of High-Power Low-Speed Diesel Engine
by Wenxiang Gao, Guixin Wang, Jialiang Zhu, Ziying Fan, Xiaobo Li and Wentao Wu
Machines 2022, 10(9), 815; https://doi.org/10.3390/machines10090815 - 16 Sep 2022
Cited by 5 | Viewed by 4478
Abstract
The connecting rod assembly of a high-power low-speed diesel engine has high quality and high cost. If the connecting rod component is damaged, the whole machine may be paralyzed, resulting in serious economic losses and safety problems, so it is necessary to carry [...] Read more.
The connecting rod assembly of a high-power low-speed diesel engine has high quality and high cost. If the connecting rod component is damaged, the whole machine may be paralyzed, resulting in serious economic losses and safety problems, so it is necessary to carry out strength analysis and structure optimization, reduce the failure rate, and increase its life. This paper takes the connecting rod of a low-speed diesel engine as the research object, builds the crank connecting rod mechanism model, and carries on the strength simulation analysis through professional simulation software. During this period, the accurate S-N curve of connecting rod material is obtained through a fatigue test, and the static strength test of the connecting rod assembly is carried out by an electro-hydraulic servo universal testing machine. The numerical modeling is validated based on the test results. Therefore, the influence of the structural parameters of the cross-section and the large end transition fillet on the stress of the connecting rod is analyzed. The results show that optimizing matching between the large end fillet of the connecting rod and the long diameter of the rod section not only reduces the mass but also improves the safety factor. After optimizing the structure of the connecting rod, the mass of the connecting rod is reduced by 5.85%, the maximum stress is reduced by 13.7%, and the safety factor is increased by 16.0%. In addition, due to the low-speed diesel engine connecting rod assembly weight is big, and the simulation computation efficiency is low, this paper by studying the influence of the cross-section parameters of the rod body and the large end transition fillet on the stress of the connecting rod, fitted the empirical formula calculating the maximum stress of connecting rod, for this model and similar type in the conceptual design, technology design provides a new analysis method, improved the efficiency of structural optimization and strength analysis of connecting rod assembly, filled the research gap of strength analysis and structural optimization of low-speed diesel engine connecting rod. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

19 pages, 14828 KiB  
Article
Nonlinear Dynamic Characteristics of Rod Fastening Rotor with Preload Relaxation
by Li Zhao, Haosui Zhang, Peng Shen and Yibing Liu
Energies 2022, 15(3), 1052; https://doi.org/10.3390/en15031052 - 30 Jan 2022
Cited by 7 | Viewed by 2785
Abstract
Compared to ordinary rotor, rod fastening rotor has the advantages of lighter weight, higher strength and easier installation, so it is widely used in gas turbine. However, in the process of a long-term operation, the rod may be deformed due to the influence [...] Read more.
Compared to ordinary rotor, rod fastening rotor has the advantages of lighter weight, higher strength and easier installation, so it is widely used in gas turbine. However, in the process of a long-term operation, the rod may be deformed due to the influence of alternating load, high temperature and other uncertain factors. In serious cases, it can even lead to a major accident. The discontinuous characteristic of rod fastening rotor leads to great differences in dynamic characteristics compared to ordinary rotor. Based on the Herz contact theory and GW contact model, the contact effect between two discs was studied, and the relationship among the contact load, the distance between two disks and the equivalent bending stiffness was obtained. Findings show the bending stiffness to decrease nonlinearly with the decrease in contact load. The lumped mass method was used to establish the rotor model. The contact effect was considered and the Runge–Kutta method was used to solve the model. Combined with the bifurcation diagram, time domain diagram and spectrum diagram, the influence of contact stiffness on rotor dynamic characteristics was analyzed. The results show that the dynamic characteristics of the rod fastening rotor are rich due to the influence of nonlinear factors. In the case of uniform relaxation, the contact stiffness has different effects on the response state and frequency doubling amplitude of the system at different speeds, which is mainly related to the motion state of the system. In the case of non-uniform relaxation, the degree of relaxation does not affect the motion state of the system, but only changes the amplitude of vibration. The results provide theoretical support for condition monitoring and fault diagnosis of rod fastening rotor. Full article
Show Figures

Figure 1

16 pages, 82361 KiB  
Article
Deformation and Fracture Failure of a High-Speed Long Rod Intercepted by Linear Explosively Formed Penetrators Sequence
by Yishu Li, Zhonghua Huang, Anshun Shi, Xiangqun Xu, Sanmin Shen and Han Liu
Materials 2020, 13(22), 5086; https://doi.org/10.3390/ma13225086 - 11 Nov 2020
Cited by 1 | Viewed by 2426
Abstract
The fracture failure of a high-speed long rod has historically been a challenge. Since the flying plate and flying rod have a relatively low velocity, it is challenging to achieve a multi-stage fracture of the high-speed long rod within the range of existing [...] Read more.
The fracture failure of a high-speed long rod has historically been a challenge. Since the flying plate and flying rod have a relatively low velocity, it is challenging to achieve a multi-stage fracture of the high-speed long rod within the range of existing technology. In this paper, the linear explosively formed penetrators (LEFPs) sequence with a stable flight velocity of 850 m/s were used to cut a high-speed long rod. We investigated the deformation and fracture of Φ10 mm tungsten alloy long rods having different length-diameter ratios (20, 26, 35) and different speeds (1200, 1400, 1600 m/s) by employing the LEFPs sequence with different spacings (0–40 mm) and different interception angles (30°, 60°). In the meantime, the fractured rods movement pattern was recorded with a high-speed camera to elucidate the change law of the length, speed, linear momentum, and angular momentum of fractured rods. It was found that the length loss rate of the fractured rods is as high as 27%. The fractured rods rotated around the center of mass, and the vertical speed change could reach up to 18% of the muzzle velocity of the long rod, and the greatest reduction of horizontal speed and momentum could reach 37%. The longer the interaction time between LEFPs sequence and the long rod, the more beneficial the failure of the long rod. The application of LEFPs sequence solved the difficult problem of disabling the high-speed long rod, and the quantitative analysis of the fracture failure of the long rod had an important sense for studying the terminal penetration effect of the fractured rods. Full article
Show Figures

Figure 1

13 pages, 4433 KiB  
Article
Continuous and Discontinuous Streamer Leader Propagation Phenomena under Slow Front Impulse Voltages in a 10-meter Rod-Plane Air Gap
by Wahab Ali Shah, Hengxin He, Junjia He and Yongchao Yang
Energies 2018, 11(10), 2636; https://doi.org/10.3390/en11102636 - 2 Oct 2018
Cited by 25 | Viewed by 3946
Abstract
Investigation of positive streamer-leader propagation under slow front impulse voltages can play an important role in the quantitative research of positive upward lightning. In this work, we performed a large-scale investigation into leader development in a 10-m rod–plane gap under a long front [...] Read more.
Investigation of positive streamer-leader propagation under slow front impulse voltages can play an important role in the quantitative research of positive upward lightning. In this work, we performed a large-scale investigation into leader development in a 10-m rod–plane gap under a long front positive impulse. To describe the leader propagation under slow front impulse voltages, we recorded the leader propagation with a high-speed charge coupled device (CCD) camera. It is important to figure out this phenomenon to deepen our understanding of leader discharge. The observation results showed that the leader mechanism is a very complex physical phenomenon; it could be categorized into two types of leader process, namely, continuous and the discontinuous leader streamer-leader propagation. Furthermore, we studied the continuous leader development parameters, including two-dimensional (2-D) leader length, injected charge, and final jump stage, as well as leader velocity for rod–plane configuration. We observed that the discontinuous leader makes an important contribution to the appearance of channel re-illuminations of the positive leader. To clarify the above doubts under long front cases, we carried out extensive experiments in this study. The comparative study shows better results in terms of standard switch impulse and long front positive impulse. Finally, the results are presented with a view toward improving our understanding of propagation mechanisms related to restrike phenomena, which are rarely reported. Full article
Show Figures

Figure 1

Back to TopTop