Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = high-power charging station (HPCS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3277 KiB  
Article
Electric Long-Haul Trucks and High-Power Charging: Modelling and Analysis of the Required Infrastructure in Germany
by Tobias Tietz, Tu-Anh Fay, Tilmann Schlenther and Dietmar Göhlich
World Electr. Veh. J. 2025, 16(2), 96; https://doi.org/10.3390/wevj16020096 - 12 Feb 2025
Cited by 3 | Viewed by 1961
Abstract
Heavy goods transportation is responsible for around 27% of CO2 emissions from road transport in the EU and for 5% of total CO2 emissions in the EU. The decarbonization of long-distance transport in particular remains a major challenge. The combination of [...] Read more.
Heavy goods transportation is responsible for around 27% of CO2 emissions from road transport in the EU and for 5% of total CO2 emissions in the EU. The decarbonization of long-distance transport in particular remains a major challenge. The combination of battery electric trucks (BETs) with on-route high-power charging (HPC) offers a promising solution. Planning and setting up the required infrastructure is a critical success factor here. We propose a methodology to evaluate the charging infrastructure needed to support the large-scale introduction of heavy-duty BETs in Germany, considering different levels of electrification, taking the European driving and rest time regulations into account. Our analysis employs MATSim, an activity-based multi-agent transport simulation, to assess potential bottlenecks in the charging infrastructure and to simulate the demand-based distribution of charging stations. The MATSim simulation is combined with an extensive pre-processing of transport-related data and a suitable post-processing. This approach allows for a detailed examination of the required charging infrastructure, considering the impacts of depot charging solutions and the dynamic nature of truck movements and charging needs. The results indicate a significant need to augment HPC with substantial low power overnight charging facilities and highlight the importance of strategic infrastructure development to accommodate the growing demand for chargers for BETs. By simulating various scenarios of electrification, we demonstrate the critical role of demand-oriented infrastructure planning in reducing emissions from the road freight sector until 2030. This study contributes to the ongoing discourse on sustainable transportation, offering insights into the infrastructure requirements and planning challenges associated with the transition to battery electric heavy-duty vehicles. Full article
Show Figures

Figure 1

30 pages, 1439 KiB  
Review
Planning of High-Power Charging Stations for Electric Vehicles: A Review
by Alberto Danese, Bendik Nybakk Torsæter, Andreas Sumper and Michele Garau
Appl. Sci. 2022, 12(7), 3214; https://doi.org/10.3390/app12073214 - 22 Mar 2022
Cited by 42 | Viewed by 7649
Abstract
Electrification of mobility is paving the way in decreasing emissions from the transport sector; nevertheless, to achieve a more sustainable and inclusive transport system, effective and long-term planning of electric vehicles charging infrastructure will be crucial. Developing an infrastructure that supports the substitution [...] Read more.
Electrification of mobility is paving the way in decreasing emissions from the transport sector; nevertheless, to achieve a more sustainable and inclusive transport system, effective and long-term planning of electric vehicles charging infrastructure will be crucial. Developing an infrastructure that supports the substitution of the internal combustion engine and societal needs is no easy feat; different modes of transport and networks require specific analyses to match the requirements of the users and the capabilities of the power grid. In order to outline best practices and guidelines for a cost-effective and holistic charging infrastructure planning process, the authors have evaluated all the aspects and factors along the charging infrastructure planning cycle, analysing different methodological approaches from scientific literature over the last few years. The review starts with target identification (including transport networks, modes of transport, charging technologies implemented, and candidate sites), second, the data acquisition process (detailing data types sources and data processing), and finally, modelling, allocation, and sizing methodologies. The investigation results in a decision support tool to plan high-power charging infrastructure for electric vehicles, taking into account the interests of all the stakeholders involved in the infrastructure investment and the mobility value chain (distributed system operators, final users, and service providers). Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

15 pages, 5552 KiB  
Article
Novel Modelling Approach for the Calculation of the Loading Performance of Charging Stations for E-Trucks to Represent Fleet Consumption
by Thomas Märzinger, David Wöss, Petra Steinmetz, Werner Müller and Tobias Pröll
Energies 2021, 14(12), 3471; https://doi.org/10.3390/en14123471 - 11 Jun 2021
Cited by 4 | Viewed by 2218
Abstract
In its “Sustainable and Smart Mobility Strategy”, the European Commission assumes a 90% reduction in traffic emissions by 2050. The decarbonisation of transport logistics as a major contributor to climate change is, therefore, indicated. There are major challenges in converting logistic transport processes [...] Read more.
In its “Sustainable and Smart Mobility Strategy”, the European Commission assumes a 90% reduction in traffic emissions by 2050. The decarbonisation of transport logistics as a major contributor to climate change is, therefore, indicated. There are major challenges in converting logistic transport processes to electric mobility. Currently, there is little available information for the conversion of entire fleets from fossil to electric fuel. One of the biggest challenges is the additional time needed for recharging. For the scheduling of entire logistics fleets, exact knowledge of the required loading times and loading quantities is essential. In this work, a parametrized continuous function is, therefore, defined to determine the essential parameters (recharging time, retrieved power, energy amounts) in HPC (high-power charging). These findings are particularly important for the deployment of multiple e-trucks in fleets, as logistics management depends on them. A simple function was constructed that can describe all phases of the charging process in a continuous function. Only the maximum power of the charging station, the size of the battery in the truck and the start SOC (state of charge) are required as parameters while using the function. The method described in this paper can make a significant contribution to the transformation towards electro-mobile urban logistics fleets. The required charging time, for example, is crucial for the planning and scheduling of e-logistics fleets and can be determined using the function described in this paper. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

Back to TopTop