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Abstract: In its “Sustainable and Smart Mobility Strategy”, the European Commission assumes a
90% reduction in traffic emissions by 2050. The decarbonisation of transport logistics as a major
contributor to climate change is, therefore, indicated. There are major challenges in converting
logistic transport processes to electric mobility. Currently, there is little available information for the
conversion of entire fleets from fossil to electric fuel. One of the biggest challenges is the additional
time needed for recharging. For the scheduling of entire logistics fleets, exact knowledge of the
required loading times and loading quantities is essential. In this work, a parametrized continuous
function is, therefore, defined to determine the essential parameters (recharging time, retrieved
power, energy amounts) in HPC (high-power charging). These findings are particularly important for
the deployment of multiple e-trucks in fleets, as logistics management depends on them. A simple
function was constructed that can describe all phases of the charging process in a continuous function.
Only the maximum power of the charging station, the size of the battery in the truck and the start
SOC (state of charge) are required as parameters while using the function. The method described in
this paper can make a significant contribution to the transformation towards electro-mobile urban
logistics fleets. The required charging time, for example, is crucial for the planning and scheduling of
e-logistics fleets and can be determined using the function described in this paper.

Keywords: logistics; e-mobility; mathematical function; high-power charging; fleet conversion;
e-truck; charging function

1. Introduction

The European Green Deal assumes a massive reduction in greenhouse gas emissions
in the transport sector. A reduction in emissions of 55% by the year 2030 is announced [1].
The way to achieve this is by increasing sustainability in the transport sector. Various LCA
(life cycle assessment) analyses for the field of urban logistics show that the use of e-trucks
can contribute significantly to the reduction in greenhouse gas emissions [2–4]. Transport
logistics, in particular, will face special challenges here [5].

The time needed for charging is seen as especially problematic for planning in logis-
tical processes [6,7]. The accurate simulation of charging processes in electro mobility is
becoming increasingly important as the number of vehicles increases, particularly in the
field of urban logistics, where numerous vehicles must be recharged simultaneously at
a hub [8].

This paper was developed in the course of the “MegaWatt Logistics” research project [9].
The aim of the project is to develop strategies based on a field test with 8 e-trucks (26t,
MAN, Steyr, Austria) in order to force a fleet to convert to electric mobility. The project
showed that the exact knowledge of the charging times, as well as the energy quantities,
are crucial for the management of e-trucks.
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If the charging processes are simultaneous, an imprecise representation of the recharg-
ing performance leads to high errors due to the superimposition of the individual processes.
Therefore, the total power consumption and the implication on the power supply system
can only be predicted insufficiently.

In addition to the instantaneous power required on site, knowledge of the charging
quantity and time required for the tours is decisive for the dispatching of e-fleets. For
practical use, therefore, a function is needed that maps the charging process as simply and
as accurately as possible. These findings form the basis for an efficient use of e-vehicles in
current logistics management tools.

1.1. Literature Review

A wide range of charging pole models are currently cited in the literature. On the
one hand, complex prediction models for the exact determination of the superposition of
individual charging processes are discussed [10,11].

The simpler models usually use a constant power supply [12,13]. This is a simple
approach that gives a good match with reality when charging at low C-rates (factor of
charging power to nominal capacity). However, if we look at HPC (high power charging),
we see that this assumption cannot be brought into agreement with reality [14].

HPC simulations often use data-driven models if measurement data are available [15].
Novel approaches follow AI or machines learning strategies [16,17]. When using data-
driven models or AI algorithms, transfer to new battery or charging technologies requires
more effort. Large amounts of data are again required for this. Therefore, an adaptation of
these models is only possible under the condition of real data. [18]

Unsteady functions and models based on Kalman filters are also proposed [19,20].
The use of these models in current fleet management tools is only possible to a limited
extent, as more complex functions would have to be incorporated here. This leads to an
increased computing effort that cannot be handled by the current software solution. [21,22]

The methods mentioned here have useful applications for their respective fields of
use. However, the methods described here are not sufficiently suitable for practical use in
fleet management. A continuous simple function would be desirable for calculating the
charging times and energy quantities as accurately as possible.

A major problem here is that the charging characteristics depend to a large extent on
the battery management system (BMS) [23]. The BMS varies from vehicle to vehicle. In
addition to the underlying battery technology (e.g., Li-NMC, LiFePo, . . . ) differences in
thermal management must also be taken into account [24]. It is, therefore, important for the
calculations to be able to adapt the function to different vehicles. In this work, we search
for a function to describe HPC operations that satisfy the following:

• Simple function with few parameters.
• The computational effort when using the method should be low.
• Easy adaptability to other BMS or alternative technologies.
• High accuracy.

The function is intended to provide further contributions in the following areas:

• Determination of exact charging times for given SOC rates and charging infrastructure
solutions.

• Impact of superposition of multiple time-shifted charging events in terms of power
consumption.

• Use in fleet management systems for the integration of e-trucks in logistics fleets.

1.2. Research Questions

This paper, therefore, deals with the problem of simulating the high-power charging
of electric trucks. The following research questions were, therefore, formulated:
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• How can HPC operations for e-trucks in terms of critical parameters (charging time,
charging amount, SOC status) be calculated as easily as possible for fleet management
tools?

• What accuracies can be achieved here compared to real-life data?
• Can the method be adapted to other charging characteristics?
• Which statements regarding the superposition of several charging processes can be

derived from the model?

Based on real data of an electric truck field test, as well as on charging curves of
established electric cars, an accurate method was developed to simulate charging processes.
Since the size of the batteries and the charging performance varies depending on the
application, the possibility was created to adapt this in the model.

1.3. Logistic as a Function

In one sentence, “The logistics mission is to provide the right quantity, of the right
objects as objects of logistics (goods, people, energy, information), at the right place (source,
sink) in the system, at the right time, in the right quality, at the right cost” [25]. Derived
from this to the target of the logistic regarding truck fleets is as follows: It is to get goods to
specific places at specific times and to do so at the lowest possible cost. The technology
used, at least in relation to the truck, is reflected in the characteristics of the energy storage
device for performing the work, in particular its type and capacity. The type of energy
storage device is determined by the form of energy and its technology, e.g., diesel, H2 or
batteries. The required size of the energy storage is determined by the range and landscape
to operate in and the weights of the transported goods.

Furthermore, the technology determines the type or location and the speed at which
the truck’s energy storage system can, should or must be refilled. The technology used
also significantly determines the maintenance effort or the susceptibility to faults and the
resulting costs. In order to illustrate a changeover between different technologies or to
enable a comparison of these technologies, it is necessary to describe this formally. As
described in [26], there are three main applications for a TCO (total cost of ownership)
application. The three primary uses of TCO model data by the case study firms: supplier
selection, supplier evaluation or measurement of ongoing supplier performance, and to
drive major process changes/re-engineer. The TCO is, therefore, a good basis for an
assessment. A detailed description of the TCO in transportation can be found in [27–29].
Therefore, the required TCO concept is presented below in a very condensed form.

Let TCO (I, E) be the mapping to determine the total cost of ownership, where I
describe the total infrastructure (fuelling capabilities, trucks, and all downstream infras-
tructure required for operation and their expenses) and E describes the total energy con-
sumption.

The required energy E =
∫

Ptdt is determined by the load profile when refueling the

truck fleet Pt. To design and determine I
(

LN,
⇀
PN, Pmax

)
, we need LN (number and type

of trucks),
→
PN (rated capacities of each fueling option), and Pmax = max(Pt) (maximum

expected total fueling capacity). To determine LN

( →
EN,

→
PN; SF, TF, HF

)
, in addition to

→
EN

(nominal capacities of the trucks’ energy storage systems) and
→
PN (nominal capacities of

the fueling infrastructure), we also need the mappings SF (service function of the fleet
technology considered in the scenario), TF (trips to be made by the fleet), and HF (stopping
times of the fleet for operation), which are very specific to the use case. Furthermore, for

the dimensioning we still need, with Pt

(
⇀

EN,
⇀
PN; SF, TF, HF

)
, the load profile that the truck

fleet causes during refueling. Since the load profile is generated by

Pt = ∑LN
i=1Pt,i, (1)
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it is often necessary to calculate the load profile for each truck when calculating the optimal
fleet composition.

SF, TF, and HF remain predominantly unaffected by the choice of technology, as long
as HF is only generated by normal operation and is not influenced by any refueling times
HT via max(HF, HT). In any case, the main factors influencing the load profile during
refuelling are EN and PN, and the time required for refueling HT is also determined by
these two variables. In conventional trucks, the refueling process does not happen during
the truck loading times, but the time for refueling is short enough that it can be considered
negligible. In the case of e-trucks, the refuelling times are naturally longer, but the refuelling
process can be carried out during loading. If it is now possible to fill up the e-truck with
sufficient energy in this time window, the refuelling times do not affect the stopping times.
In the following section, an easy-to-use method is derived that can be used to solve the
mentioned problems in a simple manner and with sufficient computing speed.

2. Materials and Methods
2.1. Data Basis

The measured data from the Megawatt Logistics project were used to create the model
for the charging points. These are measured values at a 44 kW charging station from
SCHRACK and a 150 kW charging station from ABB. The measurement is performed with
a measuring rate of dt = 2 min. Via the charging stations, 26t electric trucks were loaded.
The measurements were carried out over the course of the integration of the e-trucks into
the running operation of logistics distribution centers.

Two different battery variants were used in the electric trucks. One version with
150 kWh installed battery capacity and 124 kWh usable capacity and one version with
224 kWh installed capacity and 184 kWh usable capacity. Due to the recording of the
measured values during normal operation of the electric truck and the reduced usable
battery capacity by the manufacturer, it was not possible to carry out series of measurements
from SOC = 0 to SOC = 100. For this reason, those charging cycles were determined from
the measured values which cover the largest possible SOC range. Typical power profiles
are shown in Figure 1a for a 44 kW charging station and in Figure 1b for a 150 kW charging
station. In the case of the 44 kW charging point, 39 out of 512 charging processes were
found with a sufficiently large SOC range. In the case of the 150 kW charging point, 15 out
of 104 charging processes were found.
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Figure 1. (a) Shows the individual measured values of an e-fueling of an e-truck with a battery capacity of 224 kWh at a charging 

station with 44 kW. (b) Shows the individual measured values of an e-fueling of an e-truck with a battery capacity of 224 kWh at a 

charging station with 150 kW. 

2.2. Analytical Approach 

Figure 1. (a) Shows the individual measured values of an e-fueling of an e-truck with a battery capacity of 224 kWh at a
charging station with 44 kW. (b) Shows the individual measured values of an e-fueling of an e-truck with a battery capacity
of 224 kWh at a charging station with 150 kW.
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2.2. Analytical Approach

The method described below for determining the charge power or state of charge of
the battery has been developed for the following applications.

• Flexibility in terms of battery capacity.
• Flexibility with regard to the nominal capacity of charging stations.
• Determination of the instantaneous charging capacity of an electric truck.
• Determination of the state of charge of an electric truck.
• Applicability for the calculation of the characteristic values for the HUB design with

regard to electric truck fleets.
• Applicability for the calculation of charging times for electric truck fleets.
• Determination of parameters for intelligent load management for electric truck fleets.

The following structure was defined in order to fulfil the goals of the model:
In the first step, a function Pt0(t; EN, PN) was used to describe the charging power

away from the starting point t0 at SOC = 0 with parameters EN, the nominal capacity of
the battery, and PN, the nominal power of the charging station. Based on this, the current
state of charge of the battery is calculated after the time t starting from a SCC = 0 at the
beginning of charging via

Et0 =
∫ t

0
Pt0(s; En, PN)ds (2)

Using these considerations, for the corresponding PN and EN, the charging time tSOCx

can be calculated, which is needed, based on the model, to charge the battery from SOC = 0
to SOC = x. Using this time, we can now define the function

PtSOCx
(t; EN, PN) = Pt0(t + tSOCx ; En, Pn) (3)

for the charge power, starting from any state of charge, and the function

EtSOCx
(t; En, PN) = Et0(t + t0; En, PN)− Et0(tSOCx ; EN, PN)

=
∫ t

0 Ptsocx(s; EN, PN)ds
(4)

for the state of charge of the battery.
In order to be able to use the defined steps, we need a suitable function for Pt0 . To find

this function we do not want to follow the typical path of piecewise functions but instead
define the function using a closed formulation. By taking a look at the measured values
from Figure 1a,b we can see that we need a function which is quite constant over a certain
range and runs towards zero in a curve at the end. This behaviour can be achieved by a
sigmoid function.

2.3. Identify Pt0

As a test function, we choose f(t) := e−(λ t)k
. This function is a function between 1

and 0, at λ the function has a fixed value of about 0.63 and by k the speed is determined
with which the curve goes towards zero. We use that the test function starts with one and
scale the function with PN. As a next step we perform an a priori conditioning of the shape
of the curve using λ := PN

EN
and k = 3 · EN

PN
. From this we now obtain an estimate of the

function

Pt0 = PN · e
−( PN

ferror(PN,EN)· EN
·t)

3· EN
PN

(5)

with ferror as a correction function to achieve the desired battery capacity. Actually, we
would also need a correction function for the term at k. However, to calculate this, we
need measured values from more than two different sizes of charging stations. With the
value given for k we have a good approximation for the behavior at PN = 44 kW. For more
details see the point discussion.
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2.4. Finding the Correction Function

To calculate the correction function, we continue as follows. In the first step we
calculate the maximum reached energy capacity Etend of the selected EN and PN using
function (5). Based on the calculated values, a set of parameterized correction func-
tions fEN(PN) each of the same type is determined. These functions calculate for each
EN the error EN

Etend
regarding PN. In the next step we search for a homotopy [30] with

H(PN, 0) := fENmin(PN) and H(PN, 1) := fENmax(PN). Our found homotopy H must also
meet our functions fEN for the chosen ENmin < EN < ENmax. Through the transformation
(ENmin − EN)/(ENmax − ENmin) now follows the continuous deformation H(PN, EN). This
deformation now maps the individual functions fEN into each other. The deformation H
found in this way is our searched function ferror. Based on this we now get:

Pt0 = PN · e
−( PN

H(PN,EN)· EN
·t)

3· EN
PN

(6)

3. Results
3.1. Applying the Method

With regard to the battery capacities for electric trucks to be expected in the dis-
tribution logistics, the following nominal capacities EN ∈ {600, 440, 360, 224, 150} were
selected for calculation. Additionally, the following nominal charging power PN ∈
{600, 500, 360, 250, 150, 63, 44}was selected. We now use the function defined in Equation (5)
where, in the first step, we have chosen the correction function with ferror = 1. Below the
results for EN = 224 kWh and EN = 600 kWh are shown in Figure 2a,b.
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Figure 2. (a) Battery charge for 224 kWh battery with different charging powers without correction function; (b) battery
charge for 600 kWh battery with different charging powers without correction function.

3.2. Calculate the Correction Function

In the first step, we calculate the errors cPN = EN
max(Et0)

, regarding PN. From these

values, we can calculate an error function with respect to PN for each EN. In Figure 3a,b
this error function is shown for EN = 224 kWh and EN = 600 kWh.
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Figure 3. (a) Fitting of the error function, as a polynomial of degree 4, to the maximum state of charge of 150 kWh battery as
a function of charge power. (b) Fitting of the error function, as a polynomial of degree 4, to the maximum state of charge of
600 kWh battery as a function of charge power.

The error ferror(PN; EN) behaves for all EN fix as a fourth-degree polynomial with
respect to PN. So, we can define ferror(PN) = ∑M

i=0 ai · Pi
N with M = 4 for each EN.

Based on these functions we can now calculate a homotopy H(PN, EN), which transfers
each function into the other. We calculate this homotopy by a coefficient mapping. In
Figure 4a,b the coefficient mapping is shown with respect to the coefficients i = 0 and i = 4.
In Figure 4a,b the coefficient mapping was calculated using a polynomial of degree 4. The
advantage for these procedures lies in the calculation of the error function via pure vector
matrix operations. This results in a somewhat faster calculation than an exact approach.
The disadvantage is that a sufficient accuracy is only given in a certain range. Fortunately,
the accuracy can be calculated. This will be discussed in a later chapter.
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In this step we now want to collect the first results of our work. We now insert our
coefficient mapping and get

ferror =
M

∑
i=0

S

∑
j=0

ci,j · E
j
N · P

i
N (7)
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Now, we get the representation for H(PN, EN) =
⇀

EN × C×
⇀
PN as a vector matrix

operation with
⇀

EN =
(

E0
N, E1

N, E3
N, E4

N

)
,
⇀
PN =

(
P0

N; P1
N; P2

N; P3
N; P4

N

)
and

C =


−7.12 × 10−23 5.57 × 10−19 −5.62 × 10−16 7.57 × 10−14 −4.65 × 10−13

1.05 × 10−19 −9.19 × 10−16 9.57 × 10−13 −1.32 × 10−10 7.71 × 10−10

−5.23 × 10−17 5.51 × 10−13 −6.01 × 10−10 8.75 × 10−8 −4.65 × 10−7

9.03 × 10−15 −1.42 × 10−10 1.68 × 10−7 −2.69 × 10−5 1.21 × 10−4

−1.26 × 10−13 1.33 × 10−8 −1.83 × 10−5 3.81 × 10−3 9.88 × 10−1

 (8)

the coefficient matrix. We now get the following representation for

Pt0 = PN · e
−( PN

⇀
EN×C×

⇀
PN · EN

·t)
3· EN

PN

(9)

3.3. Accuracy

In the following section, we want to discuss the achieved accuracy of our model.
This is analysed from several perspectives. In a first step we want to see how well the
SOC is reproduced with our model. For this purpose, we have calculated the SOC for
different battery sizes with different nominal charging powers. To achieve this, we have
used Equation (2) with Equation (9). In Figure 5a,b, we can see that we exactly reach the
nominal capacity of the battery depending on the nominal charging power.
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Figure 5. (a) Battery charge for 224 kWh battery with different charging powers and with correction function; (b) battery
charge for 600 kWh battery with different charging powers and with correction function.

The question now is how well a nominal capacity is achieved, which lies between
and outside the support points for calculating the correction function, Equation (7). The
answer to this question is shown in Figure 6. Figure 6a shows the absolute error with
the accuracy ranges of 1%, 2% and 5% with respect to the nominal battery capacity. In
Figure 6b, the error is shown relatively. It should also be noted that the error regarding the
battery capacity does not significantly change depending on the nominal charge capacity.
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Figure 6. (a) Shows the absolute error with respect to the maximum capacity of the battery. (b) Shows the relative error
with respect to the maximum state of charge of the battery.

The next question is how well the progression of the SOC is reproduced with this
model. To answer this question, the results of the model were compared with measurement
results from the ongoing operation of electric trucks. Due to the load management system
and the limitations of the electric truck operation, it was not possible to measure the load
curves in the area of 0% SOC. Figure 7a,b shows the result of the model regarding the state
of charge of the battery compared to the measured values at the charging station.
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Figure 7. (a) Shows the calculated progression of the state of charge of an e-truck with 224 kWh battery capacity at 44 kW
charging point with the series of measurements overlaid. (b) Shows the calculated progression of the state of charge of an
e-truck with 224 kWh battery capacity at 150 kW charging point with the series of measurements overlaid.

The last question we consider is the accuracy of the current power PtSOCx
. This means

how well the model describes the instantaneous power of the charging column after time
t with an initial SOC = x. Without loss of generality, we can limit this question to the
case SOC = 0. Figure 8a,b shows the measured values and the model. As we can see, the
approximation for the version with PN = 44 kW is good. If a higher accuracy is required
for the range of higher PN, the model can be improved by further measurements in the
range of higher PN, as described in the methodology part.
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lation to dt. To address this question, we use the definition of the diversification factor  

Figure 8. (a) Shows the calculated characteristic of the charging power of an e-truck with 224 kWh battery capacity at 44 kW
charging station with the series of measurements overlaid. (b) Shows the calculated characteristic of the charging power of
an e-truck with 224 kWh battery capacity at 150 kW charging station with the series of measurements overlaid.

3.4. Simulation Results

In the following, an application of the above developed method to describe e-charging
processes of several e-trucks is displayed. As a result, the power simultaneity of super-
positioned charging operations are presented. The actual power load on the transformer
in a scenario with N = 10 e-trucks was calculated. In Figure 9, cases for a usable battery
capacity of EN = 182 kWh and the nominal power of the charging stations PN = 44 kW
and PN = 350 kW and with a SOC = 0% or SOC = 50%. Figure 9a shows the transformer
power for an initial SOCt0 = 0%, for equidistant arrival times of dt = 5 min, dt = 15 min
and dt = 30 min. Figure 9b shows the transformer power of the same setting but with an
initial SOCt0 = 50%.
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Figure 9. (a,b) Shows the interaction of SOC level, charging station power and the time interval of the arrivals with respect
to the simultaneity ratio for 10 e-trucks with 224 kWh battery capacity.

In these four scenarios, it is easy to see that the maximum power demand does not
necessarily form at the full possible amount. It can also be clearly seen that the power
maximum depends on the parameters dt and the initial SOCt0 . It is also obvious that this
dependence changes with respect to the nominal power of the charging point PN. Now, the
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relevant question is the change in this maximum with respect to SOCt0 and PN in relation
to dt. To address this question, we use the definition of the diversification factor

fd =
max(∑N

i=1 Pi(t))

∑N
i=1 PNi

(10)

with Pi(t) as the current power at the i-th charging point and PNi as the nominal power
at the i-th charging point. In Figure 10a, fd(dt, PN; SOCt0 , EN) is shown, and in Figure 10b,
fd(dt, SOCt0 ; PN, EN) is shown. As can be seen in the figures, fd decreases faster as a
function of SOCt0 than as a function of PN with respect to dt.
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Figure 10. (a) The influence of the time interval on the simultaneity for 10 e-trucks with a battery capacity of 224 kWh and a
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battery capacity of 224 kWh and a charging power of 150 kW with respect to different SOC.

4. Discussion

With this work, a new method was presented to simulate charging processes in the
field of HPC for e-vehicles. As shown, this can significantly contribute to the conversion
towards e-mobility in the field of logistics. With the help of the described function, basic con-
siderations as well as specific design calculations for the required charging infrastructure
are possible. Applications in the logistics sector can be checked for a possible conversion
in the direction of e-mobility. With reference to the research questions formulated at the
beginning, the following aims were achieved:

4.1. Use Case E-Trucks

Based on the formulations in Section 1.3 a method for determining the necessary
infrastructure for logistics hubs was created using the mapping presented in Equation (9)
for the charging process via a simulation. Here, in the first step, LN, Pt and FN are
determined via probabilistic optimization. Where FN denotes the number of charging
points, by using Equation (1), FN can be calculated, as given in Equation (11)

Pt = ∑LN
i=1Pt,i = ∑FN

j=1Pt,j (11)

For this purpose, the distribution densities for the stopping times were determined
from the data of the corresponding hubs, and a set of the necessary random variables for
HF was generated. From the available data, the tours and their composition were extracted.
In the process, corresponding delivery windows were also described. Due to the lack of
available data, SF was not yet simulated in this simulation setup, but a necessary reserve
infrastructure was estimated. Now, using the random variables for HF and a random
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assignment of the tours TF, the operation of the hub was often sufficiently simulated while

maintaining the delivery windows. Here, the choice of possible values for
⇀
PN and

⇀
EN

remained fixed, but not their number. This probabilistic optimization was now repeated

for different but selected sets of values of
⇀
PN and

⇀
EN. On this basis, the TOC of the fleet

could thus be estimated.
It has been shown that the calculation of the refuelling process plays a time essential

role and, with the above presented Formula (9), a sufficient speed of the calculation could
be achieved. It also showed that a closed formulation regarding the two variables PN and
EN was sufficient and very helpful.

4.2. Gradient

As mentioned in Section 3.2, the gradient of the load function is only adjusted in two
points via the exponent k in Equation (5). We have used a linear function for this. It has
been shown that, when using a constant to describe the slope, means for each combination
of PN and EN in Equation (5) the same value then the correction function (7) is equal to
one and is, therefore, not needed. For a nonlinear function, finding the correction function
becomes a bit more complex.

4.3. Accuracy

Since, in our application, the computational speed was more critical than the validity
range of the calculation (see Figure 4), in the second step of the calculation of the correction
function (7) a polynomial of degree 4 was also used. In this step, an approach with
exponential functions ci = a ∗ eb∗x + c ∗ ed∗x would produce a larger validity range, see
Figure 11.
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approach to a larger domain (compare to Figure 4).

However, a vector-valued function would be needed in the calculation of the correction
function and could not be represented purely by vector and matrix multiplications. This
is unproblematic with few computations, but with our approach and the associated large
number of repeated computations over time was, in fact, problematic. However, the
validity range can be extended over the approach shown above.

4.4. Superposition of Several Charging Processes

With the method described in this paper, it could be shown that it is possible to
represent charging processes of batteries in the e-mobility sector in HPC by means of a
parametrized continuous function. This is necessary for many applications in the area of
determining the simultaneity of several e-vehicles for the design of the power electronics.
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In comparison with real data, it could be shown that the power consumption over
time, as well as the calculated SOC of the batteries, can be very well described with the
model.

On the basis of superpositions of 10 simulated charging processes, it was possible
to calculate the simultaneity and thus the required power electronics. This showed that
minimization was very simple, especially for very high charging powers (150 kW, 350 kW).
A time shift of only 15 min between the start of the individual charging processes is
sufficient to achieve a reduction in the simultaneity to only 0.3 (case 350 kW). The reason
for this is the rapid reduction in the instantaneous charging power during HPC.

The second important quantity for the calculation of the concurrency is the starting
SOC of the battery. If the battery is still relatively full (SOC > 0.6), this also shows a low
simultaneity.

These calculations are indispensable, especially for calculations of the required infras-
tructure of charging solutions for many vehicles with HPC.

It was also shown that, at low charging powers (PN < 44 kW), the simultaneity is
higher from the ground up. This is due to charging at a lower C-rate, as it is possible to
charge at the rated power for a longer period of time.

5. Conclusions

The goal of this work is to provide a method to describe HPC operations for fleet
management systems. Thereby, a method was developed to approximate the charging
process with a continuous function.

The function, once parameterized, can be used to quickly calculate the required
standing times of e-trucks. Direct integration into existing dispatching tools is possible and
envisaged.

It is possible to calculate charging times and energy quantities with sufficient accuracy.
Particularly for the management of entire e-fleets, this is important and can be an essential
building block for the future integration of e-vehicles in logistic operations.

For future new battery and BMS technologies, adaptations of the model can be easily
made. Adaptations are easy to implement here and should also help to provide good
forecasts for charging characteristics in the future. The function can also be used for other
alternative technologies, such as FCEV (fuel cell electric vehicle) apart from BEV (battery
electric vehicle). For this purpose, only the basic parameters have to be adapted.

The associated increase in sustainability through alternative fuels in the logistics sector
is to be supported and pushed with this method.

In the field of urban logistics, a simple method for calculating the required standing
times can now be used for dispatching. Due to the simple structure, use within the current
dispatching tools is possible.
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Nomenclature

HPC high-power charging
SOC state of charge
LCA life cycle assessment
C-rates factor of charging power to nominal capacity [h−1]
AI artificial intelligence
TCO total cost of ownership
TCO(., .) function for the TCO
E energy
I, I(., ., .) mapping of the total infrastructure
Pt, Pt(., .; ., ., .) power at time t [kW]
LN, LN(., .; ., ., .) mapping for the number and types of trucks in the fleet
→
PN rated capacities of each fuelling option [kW]
Pmax maximum expected total fuelling capacity [kW]
→

EN nominal capacities of the trucks’ energy storage systems [kWh]
TF trips to be made by the fleet
HF stopping times of the fleet for operation [s]
HT refuelling times [s]
SF service function of the fleet technology considered in the scenario
dt Timestep [s]

Pt0 (.; ., .)
Function to describe the charging power away from the starting point
t0 at SOC = 0

[kW]

t0 time at SOC = 0 [s]
Et0 function to describe battery capacity at time t from start at t0 [kWh]
PtSOCx (.; ., .) charging power at time t from start at SOC = x [kW]
EtSOCx (.; ., .) function to describe battery capacity at time t from start at SOC = x [kWh]
f(.) test function
ferror(., .) correction function to achieve the desired battery capacity
Etend the calculated maximum reached energy capacity [kWh]
H(., .) homotopy
fEN (.) parameterized correction function
fENmin

(.) lowest parameterized correction functions
fENmax

(.) highest parameterized correction functions
ENmin lowest nominal capacities used [kWh]
ENmax Highest nominal capacities used [kWh]
cPN correction coefficients
⇀

EN vector with powers of EN
⇀
PN vector with powers of PN
fd, fd(., .; ., .) diversification factor
Pi(.) current power at the i-th charging point [kW]
PNi is the nominal power at the i-th charging point [kW]

References
1. European Commission. Sustainable and Smart Mobility Strategy—Putting European Transport on Track for the Future. In

Communication from the Commission to the European Parlament, the Council the European Economic and Social Committee and the
Committee of Regions; European Commission: Brussels, Belgium, 2020.

2. Marmiroli, B.; Venditti, M.; Dotelli, G.; Spessa, E. The transport of goods in the urban environment: A comparative life cycle
assessment of electric, compressed natural gas and diesel light-duty vehicles. Appl. Energy 2020, 260, 114236. [CrossRef]

3. Garcia, R.; Freire, F. A review offleet-based life-cycle approaches focusing on energy andenvironmental impacts of vehicles.
Renew. Sustain. Energy Rev. 2017, 79, S935–S945. [CrossRef]

4. Yu, A.; Wei, Y.; Chen, W.; Peng, N.; Peng, L. Life cycle environmental impacts and carbon emissions: A case study of electric and
gasoline vehicles in China. Transp. Res. Part D Transp. Environ. 2018, 65, 409–420. [CrossRef]

http://doi.org/10.1016/j.apenergy.2019.114236
http://doi.org/10.1016/j.rser.2017.05.145
http://doi.org/10.1016/j.trd.2018.09.009


Energies 2021, 14, 3471 15 of 15

5. Szymczyk, K.; Kadlubek, A. Challenges in general cargo distribution strategy in urban logistics—Comparative analysis of the
biggest logistics operators in EU. Transp. Res. Procedia 2019, 39, S525–S533. [CrossRef]

6. Quak, H.; Nesterova, N.; van Rooijen, T. Possibilities and Barriers for Using Electric-powered Vehicles in City Logistics Practice.
Transp. Res. Procedia 2016, 12, 157–169. [CrossRef]

7. Tsakalidis, A.; Krause, J.; Julea, A.; Peduzzi, E.; Pisoni, E.; Thiel, C. Electric light commercial vehicles: Are they the sleeping giant
of electromobility? Transp. Res. Part D Transp. Environ. 2020, 86, 102421. [CrossRef]

8. Teoh, T.; Kunze, O.; Teo, C.-C. Methodology to Evaluate the Operational Suitability of Electromobility Systems for Urban Logistics
Operations. Transp. Res. Procedia 2016, 12, 288–300. [CrossRef]

9. megaWATT Logistics. Available online: https://megawattlogistics.boku.ac.at/ (accessed on 9 June 2021).
10. Gruosso, G.; Mion, A.; Gajani, G.S. Forecasting of electrical vehicle impact on infrastructure: Markov chains model of charging

stations occupation. eTransportation 2020, 6, 100083. [CrossRef]
11. Bizzarri, F.; Bizzozero, F.; Brambilla, A.; Gruosso, G.; Gajani, G.S. Electric vehicles state of charge and spatial distribution

forecasting: A high-resolution model. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial
Electronics Society, Florence, Italy, 23–26 October 2016; pp. 3942–3947.

12. Heubner, C.; Reuber, S.; Seeba, J.; Marcinkoski, P.; Nikolowski, K.; Schneider, M.; Wolter, M.; Michaelis, A. Applica-tion-oriented
modeling and optimization of tailored Li-ion batteries using the concept of Diffusion Limited C-rate. J. Power Source 2020, 479,
228704. [CrossRef]

13. Angrisani, G.; Canelli, M.; Roselli, C.; Sasso, M. Integration between electric vehicle charging and micro-cogeneration system.
Energy Convers. Manag. 2015, 98, 115–126. [CrossRef]

14. Du, J.; Mo, X.; Li, Y.; Zhang, Q.; Li, J.; Wu, X.; Lu, L.; Ouyang, M. Boundaries of high-power charging for long-range battery
electric car from the heat generation perspective. Energy 2019, 182, 211–223. [CrossRef]

15. Ragone, M.; Yurkiv, V.; Ramasubramanian, A.; Kashir, B.; Mashayek, F. Data driven estimation of electric vehicle battery
state-of-charge informed by automotive simulations and multi-physics modeling. J. Power Source 2021, 483, 229108. [CrossRef]

16. Babaeiyazdi, I.; Rezaei-Zare, A.; Shokrzadeh, S. State of charge prediction of EV Li-ion batteries using EIS: A machine learning
approach. Energy 2021, 223, 120116. [CrossRef]

17. Sidhu, M.S.; Ronanki, D.; Williamson, S. State of Charge Estimation of Lithium-Ion Batteries Using Hybrid Machine Learning
Technique. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon,
Portugal, 14–17 October 2019; Volume 1, pp. 2732–2737.

18. Gora, P. Designing urban areas using traffic simulations, artificial intelligence and acquiring feedback from stakeholders. Transp.
Res. Procedia 2019, 41, 532–534. [CrossRef]

19. Lee, J.; Nam, O.; Cho, B. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering. J. Power
Source 2007, 174, 9–15. [CrossRef]

20. Baccouche, I.; Jemmali, S.; Manai, B.; Omar, N.; Ben Amara, N.E. Improved OCV Model of a Li-Ion NMC Battery for Online SOC
Estimation Using the Extended Kalman Filter. Energies 2017, 10, 764. [CrossRef]

21. Sreedhar, R.; Karunanithi, K. Design, simulation analysis of universal battery management system for EV applications. Mater.
Today Proc. 2021, in press. [CrossRef]

22. Skugor, B.; Deur, J. A bi-level optimization framework for electric vehicle fleet charging management. Appl. Energy 2016, 184,
1332–1342. [CrossRef]

23. Hu, J.; Morais, H.; Sousa, T.; Lind, M. Electric vehicle fleet management in smart grids: A review of services, optimization and
control aspects. Renew. Sustain. Energy Rev. 2016, 56, 1207–1226. [CrossRef]

24. El Idi, M.M.; Karkri, M.; Tankari, M.A. A passive thermal management system of Li-ion batteries using PCM composites:
Experimental and numerical investigations. Int. J. Heat Mass Transf. 2021, 169, 120894. [CrossRef]

25. Jünemann, R. Materialfluß und Logistik. Systemtechnische Grundlagen mit Praxisbeispielen; Springer: Berlin/Heidelberg, Germany,
1989. [CrossRef]

26. Ellram, L.M. Total cost of ownership: An analysis approach for purchasing. Int. J. Phys. Distrib. Logist. Manag. 1995, 25, 4–23.
[CrossRef]

27. Ghandriz, T.; Jacobson, B.; Laine, L.; Hellgren, J. Optimization data on total cost of ownership for conventional and battery
electric heavy vehicles driven by humans and by automated driving systems. Data Brief 2020, 30, 105566. [CrossRef]

28. Hagman, J.; Ritzén, S.; Stier, J.J.; Susilo, Y. Total cost of ownership and its potential implications for battery electric vehicle
diffusion. Res. Transp. Bus. Manag. 2016, 18, 11–17. [CrossRef]

29. López-Ibarra, J.A.; Gaztañaga, H.; Saez-De-Ibarra, A.; Camblong, H. Plug-in hybrid electric buses total cost of ownership
optimization at fleet level based on battery aging. Appl. Energy 2020, 280, 115887. [CrossRef]

30. Jänich, K. Topologie; Springer: Berlin/Heidelberg, Germany, 1999.

http://doi.org/10.1016/j.trpro.2019.06.054
http://doi.org/10.1016/j.trpro.2016.02.055
http://doi.org/10.1016/j.trd.2020.102421
http://doi.org/10.1016/j.trpro.2016.02.066
https://megawattlogistics.boku.ac.at/
http://doi.org/10.1016/j.etran.2020.100083
http://doi.org/10.1016/j.jpowsour.2020.228704
http://doi.org/10.1016/j.enconman.2015.03.085
http://doi.org/10.1016/j.energy.2019.05.222
http://doi.org/10.1016/j.jpowsour.2020.229108
http://doi.org/10.1016/j.energy.2021.120116
http://doi.org/10.1016/j.trpro.2019.09.089
http://doi.org/10.1016/j.jpowsour.2007.03.072
http://doi.org/10.3390/en10060764
http://doi.org/10.1016/j.matpr.2020.12.136
http://doi.org/10.1016/j.apenergy.2016.03.091
http://doi.org/10.1016/j.rser.2015.12.014
http://doi.org/10.1016/j.ijheatmasstransfer.2020.120894
http://doi.org/10.1007/978-3-662-08532-5
http://doi.org/10.1108/09600039510099928
http://doi.org/10.1016/j.dib.2020.105566
http://doi.org/10.1016/j.rtbm.2016.01.003
http://doi.org/10.1016/j.apenergy.2020.115887

	Introduction 
	Literature Review 
	Research Questions 
	Logistic as a Function 

	Materials and Methods 
	Data Basis 
	Analytical Approach 
	Identify Pt0  
	Finding the Correction Function 

	Results 
	Applying the Method 
	Calculate the Correction Function 
	Accuracy 
	Simulation Results 

	Discussion 
	Use Case E-Trucks 
	Gradient 
	Accuracy 
	Superposition of Several Charging Processes 

	Conclusions 
	References

