Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = high-altitude cerebral edema (HACE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6745 KiB  
Article
Ligustrazine hydrochloride Prevents Ferroptosis by Activating the NRF2 Signaling Pathway in a High-Altitude Cerebral Edema Rat Model
by Yue Han, Wenting Li, Huxinyue Duan, Nan Jia, Junling Liu, Hongying Zhang, Wenqian Song, Meihui Li, Yang He, Chunjie Wu and Yacong He
Int. J. Mol. Sci. 2025, 26(3), 1110; https://doi.org/10.3390/ijms26031110 - 27 Jan 2025
Cited by 4 | Viewed by 1334
Abstract
High-altitude cerebral edema (HACE) is a disorder caused by low pressure and hypoxia at high altitudes. Nevertheless, as of now, there is still a scarcity of safe and effective prevention and treatment methods. The active component of Ligusticum Chuanxiong, namely Ligustrazine hydrochloride (LH), [...] Read more.
High-altitude cerebral edema (HACE) is a disorder caused by low pressure and hypoxia at high altitudes. Nevertheless, as of now, there is still a scarcity of safe and effective prevention and treatment methods. The active component of Ligusticum Chuanxiong, namely Ligustrazine hydrochloride (LH), has shown potential in the prevention and treatment of HACE due to its anti-inflammatory, antioxidant, and neuroprotective effects in nervous system disorders. Consequently, the potential protective effect of LH on HACE and its mechanism still need to be further explored. Prior to modeling, 90 male Sprague-Dawley rats were pretreated with different doses of drugs, including LH (100 mg/kg and 50 mg/kg), dexamethasone (4 mg/kg), and ML385 (30 mg/kg). Subsequently, the pretreated rats were placed in a low-pressure anoxic chamber simulating a plateau environment to establish the rat HACE model. The effects and mechanisms of LH on HACE rats were further elucidated through determination of brain water content, HE staining, ELISA, immunofluorescence, molecular docking, molecular dynamics simulation, western blot, and other techniques. The results showed, first of all, that LH pretreatment can effectively reduce brain water content; down-regulate the expression of AQP4, HIF-1α, and VEGF proteins; and alleviate damage to brain tissue and nerve cells. Secondly, compared with the HACE group, LH pretreatment can significantly reduce MDA levels and increase GSH and SOD levels. Additionally, LH decreased the levels of inflammatory factors IL-1β, IL-6, and TNF-α; reduced total iron content in brain tissue; increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH1; and alleviated ferroptosis occurrence. Molecular docking and molecular dynamics simulations show that LH has a strong binding affinity for NRF2 signaling. Western blot analysis further confirmed that LH promotes the translocation of NRF2 from the cytoplasm to the nucleus and activates the NRF2 signaling pathway to exert an antioxidant effect. The NRF2 inhibitor ML385 can reverse the anti-oxidative stress effect of LH and its protective effect on HACE rat brain tissue. In summary, LH may have a protective effect on HACE rats by activating the NRF2 signaling pathway, inhibiting ferroptosis, and resisting oxidative stress. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 6264 KiB  
Article
Identification and Validation of STC1 Act as a Biomarker for High-Altitude Diseases and Its Pan-Cancer Analysis
by Qiong Li, Zhichao Xu, Qianhui Gong and Xiaobing Shen
Int. J. Mol. Sci. 2024, 25(16), 9085; https://doi.org/10.3390/ijms25169085 - 21 Aug 2024
Cited by 2 | Viewed by 2116
Abstract
High-altitude diseases, including acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE), are closely related to an individual’s ability to adapt to hypoxic environments. However, specific research in this field is relatively limited, and further biomarker research and clinical [...] Read more.
High-altitude diseases, including acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE), are closely related to an individual’s ability to adapt to hypoxic environments. However, specific research in this field is relatively limited, and further biomarker research and clinical trials are needed to clarify the exact role and potential therapeutic applications of key genes in high-altitude diseases. This study focuses on the role of the STC1 gene in high-altitude diseases and explores its expression patterns in different types of cancer. By using gene expression data analysis and functional experiments, we identified STC1 as a key gene affecting the development of altitude sickness. In addition, we also conducted expression and mutation analysis on STC1 in various cancer samples and found significant differences in the expression of this gene in 13 types of malignant tumors, which is associated with the hypoxic state in the tumor microenvironment. In addition, STC1 is significantly associated with patient prognosis and influences tumor immunity by mediating six types of immune cells (CD8+T cells, CD4+T cells, neutrophils, macrophages, monocytes, and B cells) in the tumor microenvironment. The expression and diagnostic value of STC1 were confirmed through GEO datasets and qPCR testing, indicating consistency with the results of bioinformatics analysis. These results indicate that STC1 is not only an important factor in the adaptive response to high-altitude diseases but may also play a role in the adaptation of cancer to low-oxygen environments. Our research provides a new perspective and potential targets for the discovery of biomarkers for high-altitude diseases and cancer treatment. Full article
Show Figures

Figure 1

11 pages, 693 KiB  
Review
High Altitude Cerebral Edema: Improving Treatment Options
by Rebecca Zelmanovich, Kevin Pierre, Patrick Felisma, Dwayne Cole, Matthew Goldman and Brandon Lucke-Wold
Biologics 2022, 2(1), 81-91; https://doi.org/10.3390/biologics2010007 - 17 Mar 2022
Cited by 20 | Viewed by 9189
Abstract
High altitude illness in its most severe form can lead to high altitude cerebral edema (HACE). Current strategies have focused on prevention with graduated ascents, pharmacologic prophylaxis, and descent at first signs of symptoms. Little is understood regarding treatment with steroids and oxygenation [...] Read more.
High altitude illness in its most severe form can lead to high altitude cerebral edema (HACE). Current strategies have focused on prevention with graduated ascents, pharmacologic prophylaxis, and descent at first signs of symptoms. Little is understood regarding treatment with steroids and oxygenation being commonly utilized. Pre-clinical studies with turmeric derivatives have offered promise due to its anti-inflammatory and antioxidant properties, but they warrant validation clinically. Ongoing work is focused on better understanding the disease pathophysiology with an emphasis on the glymphatic system and venous outflow obstruction. This review highlights what is known regarding diagnosis, treatment, and prevention, while also introducing novel pathophysiology mechanisms warranting further investigation. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

14 pages, 317 KiB  
Review
Oxidative Stress and Diseases Associated with High-Altitude Exposure
by Eduardo Pena, Samia El Alam, Patricia Siques and Julio Brito
Antioxidants 2022, 11(2), 267; https://doi.org/10.3390/antiox11020267 - 28 Jan 2022
Cited by 113 | Viewed by 8441
Abstract
Several diseases associated with high-altitude exposure affect unacclimated individuals. These diseases include acute mountain sickness (AMS), high-altitude cerebral edema (HACE), high-altitude pulmonary edema (HAPE), chronic mountain sickness (CMS), and, notably, high-altitude pulmonary hypertension (HAPH), which can eventually lead to right ventricle hypertrophy and [...] Read more.
Several diseases associated with high-altitude exposure affect unacclimated individuals. These diseases include acute mountain sickness (AMS), high-altitude cerebral edema (HACE), high-altitude pulmonary edema (HAPE), chronic mountain sickness (CMS), and, notably, high-altitude pulmonary hypertension (HAPH), which can eventually lead to right ventricle hypertrophy and heart failure. The development of these pathologies involves different molecules and molecular pathways that might be related to oxidative stress. Studies have shown that acute, intermittent, and chronic exposure to hypobaric hypoxia induce oxidative stress, causing alterations to molecular pathways and cellular components (lipids, proteins, and DNA). Therefore, the aim of this review is to discuss the oxidative molecules and pathways involved in the development of high-altitude diseases. In summary, all high-altitude pathologies are related to oxidative stress, as indicated by increases in the malondialdehyde (MDA) biomarker and decreases in superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant activity. In addition, in CMS, the levels of 8-iso-PGF2α and H2O2 are increased, and evidence strongly indicates an increase in Nox4 activity in HAPH. Therefore, antioxidant treatments seem to be a promising approach to mitigating high-altitude pathologies. Full article
(This article belongs to the Special Issue Oxidative Stress in Cardiac Disease)
7 pages, 1343 KiB  
Article
Rescue Emergencies Due to High-Altitude Illnesses Are Rare in Switzerland
by Benedikt Gasser and Joel Stouder
Int. J. Environ. Res. Public Health 2022, 19(2), 865; https://doi.org/10.3390/ijerph19020865 - 13 Jan 2022
Cited by 3 | Viewed by 2579
Abstract
Background: Despite a potential high risk of acute mountain sickness (AMS) in the Swiss Alps, there is a lack of analyses concerning its relevance over longer periods. In consequence, the aim of this study is to analyze the prevalence of AMS in comparison [...] Read more.
Background: Despite a potential high risk of acute mountain sickness (AMS) in the Swiss Alps, there is a lack of analyses concerning its relevance over longer periods. In consequence, the aim of this study is to analyze the prevalence of AMS in comparison to other causes of mountain emergencies in recent years in Switzerland. Material and Methods: Based on the central registry of mountain emergencies of the Swiss Alpine Club (SAC), all cases in the period between 2009 and 2020 were analyzed for AMS including the most severe forms of high-altitude pulmonary edema (HAPE) and high-altitude cerebral edema (HACE). Emergencies were assessed for the severity of the event with a National Advisory Committee for Aeronautics (NACA) score. Results: From a total of 4596 high-altitude mountaineering emergencies identified in the observational period, a total number of 352 cases of illnesses were detected. Detailed analysis revealed 85 cases of AMS, 5 cases of HAPE, and 1 case of HACE. The average altitude was 3845 ± 540 m. Most cases were in the canton of Valais, especially in the Monte Rosa region and the mountains of the Mischabel group (Täschhorn, Dom, Südlenz, Nadelhorn, Hohberghorn). There were only three deaths related to high-altitude illnesses; all the other events could be identified as moderate to severe but not life-threatening. Discussion: An emergency due to AMS that requires rescue is unlikely in the Swiss Alps. This does not imply that AMS is not a concern. However, the facts that the maximal altitude is relatively low and that fast self-descents often seem possible probably minimize the likelihood that mountaineers with symptoms contact emergency services. Full article
(This article belongs to the Special Issue Health, Wellbeing and Performance in Extreme Environments)
Show Figures

Figure 1

Back to TopTop