High Altitude Cerebral Edema: Improving Treatment Options
Abstract
:1. Introduction
2. Current Medical Management
2.1. Prevention
2.1.1. Nonpharmacologic Prevention
Graded Ascent
Pre-Acclimatization
2.1.2. Pharmacologic Prevention
Acetazolamide
Dexamethasone
Additional Options
2.2. Treatment
2.2.1. Nonpharmacologic Treatment Strategies
Descent
Oxygen
Portable Hyperbaric Chambers
2.2.2. Pharmacologic Treatment Strategies
Dexamethasone
Acetazolamide
2.2.3. Re-Ascent
3. Novel Approaches
4. Emerging Discovery
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallagher, S.A.; Hackett, P.H. High-altitude illness. Emerg. Med. Clin. N. Am. 2004, 22, 329–355. [Google Scholar] [CrossRef] [PubMed]
- Hartman-Ksycińska, A.; Kluz-Zawadzka, J.; Lewandowski, B. High altitude illness. Przegl. Epidemiol. 2016, 70, 490–499. [Google Scholar] [PubMed]
- Wilson, M.H.; Newman, S.; Imray, C.H. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009, 8, 175–191. [Google Scholar] [CrossRef]
- Hackett, P.H.; Roach, R.C. High altitude cerebral edema. High Alt. Med. Biol. 2004, 5, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Hackett, P.H.; Rennie, D.; Levine, H.D. The incidence, importance, and prophylaxis of acute mountain sickness. Lancet 1976, 2, 1149–1155. [Google Scholar] [CrossRef]
- Derby, R.; deWeber, K. The athlete and high altitude. Curr. Sports Med. Rep. 2010, 9, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Z.; Zheng, B.-H.; Wang, H.-B.; Zheng, J.-B.; Cai, Z.-X.; Long, R.-L.; Ye, G.-L.; Peng, H. The clinical characteristics of acute severe high-altitude diseases in indigenous tibetans. Chin. J. Tuberc. Respir. Dis. 2006, 29, 835–836. [Google Scholar]
- Ebert-Santos, C. High-altitude pulmonary edema in mountain community residents. High Alt. Med. Biol. 2017, 18, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Riaño López, L.; Figueredo, R.; Vásquez-Hoyos, P. Reentry high-altitude pulmonary edema in pediatric patients. Andes Pediatr. 2021, 92, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.R.; Chawla, A.; Kashyap, A.S. Acute mountain sickness, high altitude cerebral oedema, high altitude pulmonary oedema: The current concepts. Med. J. Armed Forces India 2008, 64, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.E.F.; Gatterer, H.; Falla, M.; Lawley, J.S. High-altitude cerebral edema: Its own entity or end-stage acute mountain sickness? J. Appl. Physiol. 2021, 131, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Sareban, M.; Bärtsch, P. Acute mountain sickness: Do different time courses point to different pathophysiological mechanisms? J. Appl. Physiol. 2020, 128, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Luks, A.M.; Auerbach, P.S.; Freer, L.; Grissom, C.K.; Keyes, L.E.; McIntosh, S.E.; Rodway, G.W.; Schoene, R.B.; Zafren, K.; Hackett, P.H. Wilderness medical society clinical practice guidelines for the prevention and treatment of acute altitude illness: 2019 update. Wilderness Environ. Med. 2019, 30, S3–S18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzman, R.A.; Caruso, J.L. High-altitude illness death investigation. Acad. Forensic Pathol. 2018, 8, 83–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackett, P.H.; Yarnell, P.R.; Hill, R.; Reynard, K.; Heit, J.; McCormick, J. High-altitude cerebral edema evaluated with magnetic resonance imaging: Clinical correlation and pathophysiology. JAMA 1998, 280, 1920–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackett, P.H.; Yarnell, P.R.; Weiland, D.A.; Reynard, K.B. Acute and evolving mri of high-altitude cerebral edema: Microbleeds, edema, and pathophysiology. AJNR Am. J. Neuroradiol. 2019, 40, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, D.M.; Bärtsch, P.; Knauth, M.; Baumgartner, R.W. Emerging concepts in acute mountain sickness and high-altitude cerebral edema: From the molecular to the morphological. Cell. Mol. Life Sci. CMLS 2009, 66, 3583–3594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severinghaus, J.W. Hypothetical roles of angiogenesis, osmotic swelling, and ischemia in high-altitude cerebral edema. J. Appl. Physiol. 1995, 79, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.D.; Vincent, A.L. High Altitude Cerebral Edema; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Aksel, G.; Çorbacıoğlu, Ş.K.; Özen, C. High-altitude illness: Management approach. Turk. J. Emerg. Med. 2019, 19, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.A.; Leyns, C.E.G.; Holtzman, D.M. Intercellular spread of protein aggregates in neurodegenerative disease. Annu. Rev. Cell Dev. Biol. 2018, 34, 545–568. [Google Scholar] [CrossRef]
- Clark, S.T.; Sheraton, M. Ems High-Altitude Field Prophylaxis and Treatment; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Luks, A.M.; Swenson, E.R.; Bärtsch, P. Acute high-altitude sickness. Eur. Respir. Rev. 2017, 26, 160096. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Hefti, U.; Hefti, J.P. High-altitude illnesses: Old stories and new insights into the pathophysiology, treatment and prevention. Sports Med. Health Sci. 2021, 3, 59–69. [Google Scholar] [CrossRef]
- Beidleman, B.A.; Fulco, C.S.; Muza, S.R.; Rock, P.B.; Staab, J.E.; Forte, V.A.; Brothers, M.D.; Cymerman, A. Effect of six days of staging on physiologic adjustments and acute mountain sickness during ascent to 4300 meters. High Alt. Med. Biol. 2009, 10, 253–260. [Google Scholar] [CrossRef]
- Davis, C.; Hackett, P. Advances in the prevention and treatment of high altitude illness. Emerg. Med. Clin. N. Am. 2017, 35, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Fulco, C.S.; Beidleman, B.A.; Muza, S.R. Effectiveness of preacclimatization strategies for high-altitude exposure. Exerc. Sport Sci. Rev. 2013, 41, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Fulco, C.S.; Muza, S.R.; Beidleman, B.A.; Demes, R.; Staab, J.E.; Jones, J.E.; Cymerman, A. Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R428–R436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leaf, D.E.; Goldfarb, D.S. Mechanisms of action of acetazolamide in the prophylaxis and treatment of acute mountain sickness. J. Appl. Physiol. 2007, 102, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Swenson, E.R. Pharmacology of acute mountain sickness: Old drugs and newer thinking. J. Appl. Physiol. 2016, 120, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, E.; Chen, Y.; Luo, Y. Dexamethasone for the prevention of acute mountain sickness: Systematic review and meta-analysis. Int. J. Cardiol. 2014, 173, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Ellsworth, A.J.; Larson, E.B.; Strickland, D. A randomized trial of dexamethasone and acetazolamide for acute mountain sickness prophylaxis. Am. J. Med. 1987, 83, 1024–1030. [Google Scholar] [CrossRef]
- Ellsworth, A.J.; Meyer, E.F.; Larson, E.B. Acetazolamide or dexamethasone use versus placebo to prevent acute mountain sickness on mount rainier. West. J. Med. 1991, 154, 289–293. [Google Scholar] [PubMed]
- Lipman, G.S.; Kanaan, N.C.; Holck, P.S.; Constance, B.B.; Gertsch, J.H. Ibuprofen prevents altitude illness: A randomized controlled trial for prevention of altitude illness with nonsteroidal anti-inflammatories. Ann. Emerg. Med. 2012, 59, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Gertsch, J.H.; Corbett, B.; Holck, P.S.; Mulcahy, A.; Watts, M.; Stillwagon, N.T.; Casto, A.; Abramson, C.H.; Vaughan, C.P.A.; Macguire, C.; et al. Altitude sickness in climbers and efficacy of nsaids trial (ascent): Randomized, controlled trial of ibuprofen versus placebo for prevention of altitude illness. Wilderness Environ. Med. 2012, 23, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, P.; Lipman, G.S.; Warner, K.; Jurkiewicz, C.; Phillips, C.; Sanders, L.; Soto, M.; Hackett, P. Altitude sickness prevention with ibuprofen relative to acetazolamide. Am. J. Med. 2019, 132, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Lundeberg, J.; Feiner, J.R.; Schober, A.; Sall, J.W.; Eilers, H.; Bickler, P.E. Increased cytokines at high altitude: Lack of effect of ibuprofen on acute mountain sickness, physiological variables, or cytokine levels. High Alt. Med. Biol. 2018, 19, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Gaddy, J. Ems Altitude Related Conditions and Treatment; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Taber, R.L. Protocols for the use of a portable hyperbaric chamber for the treatment of high altitude disorders. J. Wilderness Med. 1990, 1, 181–192. [Google Scholar] [CrossRef]
- Jha, S.K. Cerebral edema and its management. Med. J. Armed Forces India 2003, 59, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, T.; Bittrich, P.; Noebel, C.; Kuhne, J.F.; Schroeder, J.; Schoen, G.; Fiehler, J.; Kniep, H.C.; Gellißen, S. Efficiency of dexamethasone for treatment of vasogenic edema in brain metastasis patients: A radiographic approach. Front. Oncol. 2019, 9, 695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, J.; Rao, K.; Pastorino, S.; Kesari, S. Corticosteroids in brain cancer patients: Benefits and pitfalls. Expert Rev. Clin. Pharmacol. 2011, 4, 233–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, B.D.; Yoshimura, K.; Kobayashi, T.; Fukushima, M.; Shibamoto, T.; Ueda, G. Dexamethasone in the treatment of acute mountain sickness. N. Engl. J. Med. 1989, 321, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Grissom, C.K.; Roach, R.C.; Sarnquist, F.H.; Hackett, P.H. Acetazolamide in the treatment of acute mountain sickness: Clinical efficacy and effect on gas exchange. Ann. Intern. Med. 1992, 116, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Luo, H.; Fan, Y.; Luo, Y.; Zhou, Q. Establishment and evaluation of an experimental animal model of high altitude cerebral edema. Neurosci. Lett. 2013, 547, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhou, Y.; Zhao, T.; Han, X.; Qiao, M.; Ding, X.; Li, D.; Wu, L.; Wu, K.; Zhu, L.-L.; et al. A method for establishing the high-altitude cerebral edema (hace) model by acute hypobaric hypoxia in adult mice. J. Neurosci. Methods 2015, 245, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, Y.; Yuan, J.; Ma, X.; Zhao, Y.; Li, Y.; Li, F.; Gong, X.; Zhao, J.; Tang, H.; et al. Tetrahydrocurcumin mitigates acute hypobaric hypoxia-induced cerebral oedema and inflammation through the nf-κb/vegf/mmp-9 pathway. Phytother. Res. 2020, 34, 2963–2977. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Yin, L.; Yuan, L.; Sui, D.; Sun, Y.; Fu, H.; Chen, L.; Wang, X. Ganglioside gm1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the pi3k/akt-nrf2 pathway. Mol. Immunol. 2018, 95, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-G.; Lu, Y.-C.; Zhu, C.; Zhang, G.-J.; Ding, X.-H.; Jiang, J.-Y. Effects of ganglioside gm1 on reduction of brain edema and amelioration of cerebral metabolism after traumatic brain injury. Chin. J. Traumatol. 2003, 6, 23–27. [Google Scholar] [PubMed]
- Rubovitch, V.; Zilberstein, Y.; Chapman, J.; Schreiber, S.; Pick, C.G. Restoring gm1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury. Sci. Rep. 2017, 7, 41269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, F.; Li, M.; Han, K.; Ma, Q.; Wang, J.; Qiu, Y.; Yu, L.; He, X.; Liu, D.; Lv, H. Phenylethanoid glycosides of phlomis younghusbandii mukerjee ameliorate acute hypobaric hypoxia-induced brain impairment in rats. Mol. Immunol. 2019, 108, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, H.; Elkin, R.; Heerdt, P.M.; Koundal, S.; Xue, Y.; Lee, H.; Wardlaw, J.; Tannenbaum, A. The glymphatic system and its role in cerebral homeostasis. J. Appl. Physiol. 2020, 129, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Tait, M.J.; Saadoun, S.; Bell, B.A.; Papadopoulos, M.C. Water movements in the brain: Role of aquaporins. Trends Neurosci. 2008, 31, 37–43. [Google Scholar] [CrossRef]
- Mestre, H.; Hablitz, L.M.; Xavier, A.L.R.; Feng, W.; Zou, W.; Pu, T.; Monai, H.; Murlidharan, G.; Rivera, R.M.C.; Simon, M.J.; et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 2018, 7, e40070. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.M.; Kitchen, P.; Iliff, J.J.; Bill, R.M. Aquaporin 4 and glymphatic flow have central roles in brain fluid homeostasis. Nat. Rev. Neurosci. 2021, 22, 650–651. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, P.; Salman, M.M.; Halsey, A.M.; Clarke-Bland, C.; Macdonald, J.A.; Ishida, H.; Vogel, H.J.; Almutiri, S.; Logan, A.; Kreida, S.; et al. Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell 2020, 181, 784–799.e719. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.J.; Dai, T.M.; Shen, Y.Y.; He, J.L.; Li, J.; Tu, J.L. Atorvastatin pretreatment attenuates ischemic brain edema by suppressing aquaporin 4. J. Stroke Cerebrovasc. Dis. 2018, 27, 3247–3255. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Wu, Y.; Fan, Z.; Han, W. Simvastatin improves intracerebral hemorrhage through nf-κb-mediated apoptosis via the myd88/trif signaling pathway. Exp. Ther. Med. 2018, 15, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.T.; Zhang, H.; Xue, Y.X. Dexamethasone treatment modulates aquaporin-4 expression after intracerebral hemorrhage in rats. Neurosci. Lett. 2007, 413, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Du, K.-X.; Dong, Y.; Zhang, Y.; Hou, L.-W.; Fan, D.-X.; Luo, Y.; Zhang, X.-L.; Jia, T.-M.; Lou, J.-Y. Effects of dexamethasone on aquaporin-4 expression in brain tissue of rat with bacterial meningitis. Int. J. Clin. Exp. Pathol. 2015, 8, 3090–3096. [Google Scholar] [PubMed]
- Tanimura, Y.; Hiroaki, Y.; Fujiyoshi, Y. Acetazolamide reversibly inhibits water conduction by aquaporin-4. J. Struct. Biol. 2009, 166, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.-Q.; He, X.-Y.; Yang, X.; Xiao, Y.-C.; Duan, S.-Q.; Wang, H.; Bai, H.; Zhang, Y.; Shi, J.-Y.; Zhu, X.-L.; et al. Acetazolamide alleviate cerebral edema induced by ischemic stroke through inhibiting the expression of aqp4 mrna. Neurocrit. Care 2021, 36, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nyquist, P.; Stevens, R.D.; Mirski, M.A. Neurologic injury and mechanical ventilation. Neurocrit. Care 2008, 9, 400–408. [Google Scholar] [CrossRef]
- Wilson, M.H.; Imray, C.H.; Hargens, A.R. The headache of high altitude and microgravity—Similarities with clinical syndromes of cerebral venous hypertension. High Alt. Med. Biol. 2011, 12, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Bedford, T.H.B. The effect of increased intracranial venous pressure on the pressure of the cerebrospinal fluid. Brain 1935, 58, 427–447. [Google Scholar] [CrossRef]
- Galdamez, L.A.; Brunstetter, T.J.; Lee, A.G.; Tarver, W.J. Origins of cerebral edema: Implications for spaceflight-associated neuro-ocular syndrome. J. Neuroophthalmol. 2020, 40, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Limper, U.; Fiala, V.; Tank, J.; Elmenhorst, E.-M.; Schaelte, G.; Hew, Y.-Y.M.; Gauger, P.; Martus, P.; Jordan, J. Sleeping with elevated upper body does not attenuate acute mountain sickness: Pragmatic randomized clinical trial. Am. J. Med. 2020, 133, e584–e588. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Xie, L.; Yu, M.; Kang, H.; Feng, T.; Deane, R.; Logan, J.; Nedergaard, M.; Benveniste, H. The effect of body posture on brain glymphatic transport. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 11034–11044. [Google Scholar] [CrossRef] [PubMed]
- Simka, M.; Czaja, J.; Kowalczyk, D. Collapsibility of the internal jugular veins in the lateral decubitus body position: A potential protective role of the cerebral venous outflow against neurodegeneration. Med. Hypotheses. 2019, 133, 109397. [Google Scholar] [CrossRef] [PubMed]
Drug | Indication | Route | Dose | Adverse Effects |
---|---|---|---|---|
Acetazolamide | Prevention | Oral | Prevention: 125 mg/12 h (begin 24 h before ascent and continue at least 2 days at arrival of target altitude) Pediatric: 2.5 mg/kg/12 h | Paresthesia, polyuria, nausea, fatigue, Stevens–Johnson syndrome or anaphylaxis |
Dexamethasone | Prevention and Treatment | Prevention: Oral Treatment: Oral, intravenous, or intramuscular | Prevention: 2 mg/6 h or 4 mg/12 h Treatment: 8 mg once, then 4 mg/6 h | Mood changes, insomnia, dyspepsia, adrenal suppression, hyperglycemia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelmanovich, R.; Pierre, K.; Felisma, P.; Cole, D.; Goldman, M.; Lucke-Wold, B. High Altitude Cerebral Edema: Improving Treatment Options. Biologics 2022, 2, 81-91. https://doi.org/10.3390/biologics2010007
Zelmanovich R, Pierre K, Felisma P, Cole D, Goldman M, Lucke-Wold B. High Altitude Cerebral Edema: Improving Treatment Options. Biologics. 2022; 2(1):81-91. https://doi.org/10.3390/biologics2010007
Chicago/Turabian StyleZelmanovich, Rebecca, Kevin Pierre, Patrick Felisma, Dwayne Cole, Matthew Goldman, and Brandon Lucke-Wold. 2022. "High Altitude Cerebral Edema: Improving Treatment Options" Biologics 2, no. 1: 81-91. https://doi.org/10.3390/biologics2010007
APA StyleZelmanovich, R., Pierre, K., Felisma, P., Cole, D., Goldman, M., & Lucke-Wold, B. (2022). High Altitude Cerebral Edema: Improving Treatment Options. Biologics, 2(1), 81-91. https://doi.org/10.3390/biologics2010007