Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = high strength fiber reinforced concrete (HSFRC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5884 KiB  
Article
Bending Test of Rectangular High-Strength Steel Fiber-Reinforced Concrete-Filled Steel Tubular Beams with Stiffeners
by Shiming Liu, Zhaoyang Ji, Shangyu Li, Xiaoke Li, Yongjian Liu and Shunbo Zhao
Buildings 2024, 14(11), 3678; https://doi.org/10.3390/buildings14113678 - 19 Nov 2024
Viewed by 1038
Abstract
To better understand the bending performance of rectangular high-strength steel fiber-reinforced concrete (HSFRC)-filled steel tubular (HSFRCFST) beams with internal stiffeners, ten beams were subjected to a four-point bending test. The primary considerations were the strength grade of the HSFRC, the steel fiber content, [...] Read more.
To better understand the bending performance of rectangular high-strength steel fiber-reinforced concrete (HSFRC)-filled steel tubular (HSFRCFST) beams with internal stiffeners, ten beams were subjected to a four-point bending test. The primary considerations were the strength grade of the HSFRC, the steel fiber content, the internal stiffener type, and the circular hole spacing of the perfobond stiffener. The moment–curvature and flexural load–deflection curves were calculated. The mode of failure and the distribution of cracks of the infill HSFRC were observed. The presence of steel fibers greatly improved the bending stiffness and moment capacity of HSFRCFST beams, with the optimal effect happening at a steel fiber content of 1.2% by volume, according to the experimental findings. The type of stiffener influenced the failure modes of the exterior rectangular steel tube, which were unaffected by the compressive strength of the infill HSFRC. On the tension surface of HSFRCFST beams, the crack spacing of the infill HSFRC was virtually identical to the circular hole spacing of perfobond stiffeners. When the circular hole spacing was between two and three times the diameter, the perfobond stiffener worked best with the infill HSFRC. The test beams’ ductility index was greater than 1.16, indicating good ductility. The test beams’ rotational capacities ranged from 6.26 to 13.20, which were greater than 3.0 and met the requirements of the specification. The experimental results demonstrate that a reasonable design of the steel fiber content and the spacing between circular holes of perfobond stiffeners can significantly improve the bending resistance of rectangular HSFRCFST beams. This provides relevant parameter design suggestions for improving the ductility and bearing capacity of steel fiber-reinforced concrete beams in practical construction. Finally, a design formula for the moment capacity of rectangular HSFRCFST beams with stiffeners is presented, which corresponds well with the experimental findings. Full article
(This article belongs to the Special Issue Experimental and Theoretical Studies on Steel and Concrete Structures)
Show Figures

Figure 1

24 pages, 9623 KiB  
Article
Rapid-Hardening and High-Strength Steel-Fiber-Reinforced Concrete: Effects of Curing Ages and Strain Rates on Compressive Performance
by Fan Mo, Boxiang Li, Mingyi Li, Zhuangcheng Fang, Shu Fang and Haibo Jiang
Materials 2023, 16(14), 4947; https://doi.org/10.3390/ma16144947 - 11 Jul 2023
Cited by 4 | Viewed by 2113
Abstract
High-strength steel-fiber-reinforced concrete (HSFRC) has become increasingly popular as a cast-in-place jointing material in precast concrete bridges and buildings due to its excellent tensile strength and crack resistance. However, working conditions such as emergency repairs and low-temperature constructions require higher demands on the [...] Read more.
High-strength steel-fiber-reinforced concrete (HSFRC) has become increasingly popular as a cast-in-place jointing material in precast concrete bridges and buildings due to its excellent tensile strength and crack resistance. However, working conditions such as emergency repairs and low-temperature constructions require higher demands on the workability and mechanical properties of HSFRC. To this end, a novel rapid-hardening HSFRC has been proposed, which is produced using sulphoaluminate cement (SC) instead of ordinary Portland cement. In this study, quasi-static and dynamic tests were carried out to compare the compressive behavior of conventional and rapid-hardening HSFRCs. The key test variables included SC replacement ratios, concrete curing ages, and strain rates. Test results showed: (1) Rapid-hardening HSFRC exhibited high early strengths of up to 33.14 and 44.9 MPa at the curing age of 4 h, respectively, but its compressive strength and elastic modulus were generally inferior to those of conventional HSFRC. (2) The strain rate sensitivity of rapid-hardening HSFRC was more significant compared to its conventional counterpart and increased with increasing curing ages and strain rates. This study highlights the great potential of rapid-hardening HSFRC in rapid bridge construction. Full article
Show Figures

Figure 1

22 pages, 7954 KiB  
Article
Mechanical Properties and Absorption of High-Strength Fiber-Reinforced Concrete (HSFRC) with Sustainable Natural Fibers
by Muttaqin Hasan, Taufiq Saidi, Muhammad Jamil, Zahra Amalia and Azzaki Mubarak
Buildings 2022, 12(12), 2262; https://doi.org/10.3390/buildings12122262 - 19 Dec 2022
Cited by 16 | Viewed by 4901
Abstract
This study aimed to determine the mechanical properties and absorption of high-strength fiber-reinforced concrete (HSFRC), using sustainable natural fibers. In this analysis, two types of fibers were used, namely, ramie and abaca. Two different HSFRC mixtures were also designed, where one composition [...] Read more.
This study aimed to determine the mechanical properties and absorption of high-strength fiber-reinforced concrete (HSFRC), using sustainable natural fibers. In this analysis, two types of fibers were used, namely, ramie and abaca. Two different HSFRC mixtures were also designed, where one composition emphasized ordinary Portland cement (OPC) as a binder, and the other prioritizing calcined diatomaceous earth (CDE) as a mineral additive to replace 10% weight of OPC. Furthermore, ramie and abaca fibers were separately added to the mixtures at three different volumetric contents. Based on the results, the addition of these fibers in the concrete mixtures improved the mechanical properties of HSFRC. The improvements of compressive strength, splitting tensile strength, and flexural strength, due to the addition of ramie fiber were 18%, 17.3%, and 31.8%, respectively, while those for the addition of abaca fiber were 11.8%, 17.2%, and 38.1%, respectively. This indicated that the fibers were capable of being used as alternative materials for sustainable concrete production. The effects of ramie and abaca fibers on the absorption of HSFRC were also not significant, and their presence for the same amount of superplasticizer reduced the flow speed of fresh reinforced concrete mixtures. Full article
Show Figures

Figure 1

19 pages, 1725 KiB  
Article
Experimental Investigation on the Static Performance of Stud Connectors in Steel-HSFRC Composite Beams
by Fangwen Wu, Wenlong Tang, Chengfeng Xue, Guorui Sun, Yanpeng Feng and Hao Zhang
Materials 2021, 14(11), 2744; https://doi.org/10.3390/ma14112744 - 22 May 2021
Cited by 22 | Viewed by 2166
Abstract
In this research, high strength fiber reinforced concrete (HSFRC) was used to replace the normal strength concrete (NSC) in steel-concrete composite beams to improve their working performance, which might change the static performance of stud connectors. Firstly, push-out tests were conducted to investigation [...] Read more.
In this research, high strength fiber reinforced concrete (HSFRC) was used to replace the normal strength concrete (NSC) in steel-concrete composite beams to improve their working performance, which might change the static performance of stud connectors. Firstly, push-out tests were conducted to investigation on the static performance of stud connectors in steel-HSFRC composite beams and compared with steel-NSC composite beams. Studs of 8 sizes, 13 mm, 16 mm, 19 mm and 22 mm in diameter and 80 mm and 120 mm in height were adopted to study the influence of stud dimension. The test phenomenon shown that the crack resistance of HSFRC was better than that of NSC, and there were some splitting cracks on NSC slabs whereas no visible cracks on HSFRC slabs when specimens failed. Next, the load-slip curves of studs were analyzed and a typical load-slip curve was proposed which was divided into four stages. In addition, the effects of test parameters were analyzed according to the characteristic points of load-slip curve. Compared with NSC slab, HSFRC slab could provide greater restraining force to the studs, which improved the shear capacity and stiffness of studs while suppressed the ductility of studs. The shear capacity, stiffness and ductility of studs would significantly increase with the increasement of stud diameter and the studs with large diameter were more suitable for steel-HSFRC composite beams. The stud height had no obvious influence on the static performance of studs. Finally, based on the test results, the empirical formulas for load-slip curve and shear capacity of stud connectors embedded in HSFRC were developed which considered the influence factors more comprehensively and had better accuracy and applicability than previous formulas. Full article
Show Figures

Figure 1

16 pages, 6153 KiB  
Article
Experimental Characterization of Prefabricated Bridge Deck Panels Prepared with Prestressed and Sustainable Ultra-High Performance Concrete
by Muhammad Naveed Zafar, Muhammad Azhar Saleem, Jun Xia and Muhammad Mazhar Saleem
Appl. Sci. 2020, 10(15), 5132; https://doi.org/10.3390/app10155132 - 26 Jul 2020
Cited by 7 | Viewed by 3782
Abstract
Enhanced quality and reduced on-site construction time are the basic features of prefabricated bridge elements and systems. Prefabricated lightweight bridge decks have already started finding their place in accelerated bridge construction (ABC). Therefore, the development of deck panels using high strength and high [...] Read more.
Enhanced quality and reduced on-site construction time are the basic features of prefabricated bridge elements and systems. Prefabricated lightweight bridge decks have already started finding their place in accelerated bridge construction (ABC). Therefore, the development of deck panels using high strength and high performance concrete has become an active area of research. Further optimization in such deck systems is possible using prestressing or replacement of raw materials with sustainable and recyclable materials. This research involves experimental evaluation of six full-depth precast prestressed high strength fiber-reinforced concrete (HSFRC) and six partial-depth sustainable ultra-high performance concrete (sUHPC) composite bridge deck panels. The composite panels comprise UHPC prepared with ground granulated blast furnace slag (GGBS) with the replacement of 30% cement content overlaid by recycled aggregate concrete made with replacement of 30% of coarse aggregates with recycled aggregates. The experimental variables for six HSFRC panels were depth, level of prestressing, and shear reinforcement. The six sUHPC panels were prepared with different shear and flexural reinforcements and sUHPC-normal/recycled aggregate concrete interface. Experimental results exhibit the promise of both systems to serve as an alternative to conventional bridge deck systems. Full article
(This article belongs to the Special Issue High-Performance Eco-Efficient Concrete)
Show Figures

Figure 1

Back to TopTop