Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = heterodisulfide reductase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3190 KiB  
Review
Analysis of Mechanisms for Electron Uptake by Methanothrix harundinacea 6Ac During Direct Interspecies Electron Transfer
by Lei Wang, Xiaoman Shan, Yanhui Xu, Quan Xi, Haiming Jiang and Xia Li
Int. J. Mol. Sci. 2025, 26(9), 4195; https://doi.org/10.3390/ijms26094195 - 28 Apr 2025
Viewed by 590
Abstract
Direct interspecies electron transfer (DIET) is a syntrophic metabolism wherein free electrons are directly transferred between microorganisms without the mediation of intermediates such as molecular hydrogen or formate. Previous research has demonstrated that Methanothrix harundinacea 6Ac is capable of reducing carbon dioxide through [...] Read more.
Direct interspecies electron transfer (DIET) is a syntrophic metabolism wherein free electrons are directly transferred between microorganisms without the mediation of intermediates such as molecular hydrogen or formate. Previous research has demonstrated that Methanothrix harundinacea 6Ac is capable of reducing carbon dioxide through DIET. However, the mechanisms underlying electron uptake in M. harundinacea 6Ac during DIET remain poorly understood. This study aims to elucidate the electron and proton flux in M. harundinacea 6Ac during DIET and to propose a model for electron uptake in this organism, primarily based on the analysis of gene transcript levels, genomic characteristics of M. harundinacea 6Ac, and the pathways generating fully reduced ferridoxin (Fdred2−), reduced coenzyme F420 (F420H2), coenzyme M (CoM-SH), and coenzyme B (CoB-SH) during DIET. The findings suggest that membrane-bound heterodisulfide reductase (HdrED), F420H2-dehydrogenase lacking subunit F (Fpo), and cytoplasmic heterodisulfide reductase (HdrABC)-subunit B of F420-reducing hydrogenase (FrhB) complex play critical roles in electron uptake in M. harundinacea 6Ac during DIET. Specifically, Fpo is responsible for generating Fdred2− with reduced methanophenazine (MPH2), driven by a proton motive force, while HdrED facilitates the reduction of heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB) to CoM-SH and CoB-SH using MPH2. Additionally, cytoplasmic heterodisulfide reductase HdrABC and subunit B of coenzyme F420-hydrogenase complex (HdrABC-FrhB complex) catalyzes the reduction of oxidized coenzyme F420 (F420) to F420H2, utilizing CoM-SH, CoB-SH, and Fdred2−. This study represents the first genetics-based functional characterization of electron and proton flux in M. harundinacea 6Ac during DIET, providing a model for further investigation of electron uptake in Methanosaeta species. Furthermore, it deepens our understanding of the mechanisms underlying electron uptake in methanogens during DIET. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

21 pages, 1875 KiB  
Review
From Genes to Bioleaching: Unraveling Sulfur Metabolism in Acidithiobacillus Genus
by Ana Ibáñez, Sonia Garrido-Chamorro, Juan J. R. Coque and Carlos Barreiro
Genes 2023, 14(9), 1772; https://doi.org/10.3390/genes14091772 - 8 Sep 2023
Cited by 14 | Viewed by 4335
Abstract
Sulfur oxidation stands as a pivotal process within the Earth’s sulfur cycle, in which Acidithiobacillus species emerge as skillful sulfur-oxidizing bacteria. They are able to efficiently oxidize several reduced inorganic sulfur compounds (RISCs) under extreme conditions for their autotrophic growth. This unique characteristic [...] Read more.
Sulfur oxidation stands as a pivotal process within the Earth’s sulfur cycle, in which Acidithiobacillus species emerge as skillful sulfur-oxidizing bacteria. They are able to efficiently oxidize several reduced inorganic sulfur compounds (RISCs) under extreme conditions for their autotrophic growth. This unique characteristic has made these bacteria a useful tool in bioleaching and biological desulfurization applications. Extensive research has unraveled diverse sulfur metabolism pathways and their corresponding regulatory systems. The metabolic arsenal of the Acidithiobacillus genus includes oxidative enzymes such as: (i) elemental sulfur oxidation enzymes, like sulfur dioxygenase (SDO), sulfur oxygenase reductase (SOR), and heterodisulfide reductase (HDR-like system); (ii) enzymes involved in thiosulfate oxidation pathways, including the sulfur oxidation (Sox) system, tetrathionate hydrolase (TetH), and thiosulfate quinone oxidoreductase (TQO); (iii) sulfide oxidation enzymes, like sulfide:quinone oxidoreductase (SQR); and (iv) sulfite oxidation pathways, such as sulfite oxidase (SOX). This review summarizes the current state of the art of sulfur metabolic processes in Acidithiobacillus species, which are key players of industrial biomining processes. Furthermore, this manuscript highlights the existing challenges and barriers to further exploring the sulfur metabolism of this peculiar extremophilic genus. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

11 pages, 1665 KiB  
Communication
Supplementation of Sulfide or Acetate and 2-Mercaptoethane Sulfonate Restores Growth of the Methanosarcina acetivorans ΔhdrABC Deletion Mutant during Methylotrophic Methanogenesis
by Alicia M. Salvi, Niaz Bahar Chowdhury, Rajib Saha and Nicole R. Buan
Microorganisms 2023, 11(2), 327; https://doi.org/10.3390/microorganisms11020327 - 28 Jan 2023
Cited by 3 | Viewed by 2355
Abstract
Methanogenic archaea are important organisms in the global carbon cycle that grow by producing methane gas. Methanosarcina acetivorans is a methanogenic archaeum that can grow using methylated compounds, carbon monoxide, or acetate and produces renewable methane as a byproduct. However, there is limited [...] Read more.
Methanogenic archaea are important organisms in the global carbon cycle that grow by producing methane gas. Methanosarcina acetivorans is a methanogenic archaeum that can grow using methylated compounds, carbon monoxide, or acetate and produces renewable methane as a byproduct. However, there is limited knowledge of how combinations of substrates may affect metabolic fluxes in methanogens. Previous studies have shown that heterodisulfide reductase, the terminal oxidase in the electron transport system, is an essential enzyme in all methanogens. Deletion of genes encoding the nonessential methylotrophic heterodisulfide reductase enzyme (HdrABC) results in slower growth rate but increased metabolic efficiency. We hypothesized that increased sulfide, supplementation of mercaptoethanesulfonate (coenzyme M, CoM-SH), or acetate would metabolically alleviate the effect of the ΔhdrABC mutation. Increased sulfide improved growth of the mutant as expected; however, supplementation of both CoM-SH and acetate together were necessary to reduce the effect of the ΔhdrABC mutation. Supplementation of CoM-SH or acetate alone did not improve growth. These results support our model for the role of HdrABC in methanogenesis and suggest M.acetivorans is more efficient at conserving energy when supplemented with acetate. Our study suggests decreased Hdr enzyme activity can be overcome by nutritional supplementation with sulfide or coenzyme M and acetate, which are abundant in anaerobic environments. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

9 pages, 2327 KiB  
Article
Understanding Life at High Temperatures: Relationships of Molecular Channels in Enzymes of Methanogenic Archaea and Their Growth Temperatures
by Laura F. Ginsbach and Juan M. Gonzalez
Int. J. Mol. Sci. 2022, 23(23), 15149; https://doi.org/10.3390/ijms232315149 - 2 Dec 2022
Viewed by 1627
Abstract
Analyses of protein structures have shown the existence of molecular channels in enzymes from Prokaryotes. Those molecular channels suggest a critical role of spatial voids in proteins, above all, in those enzymes functioning under high temperature. It is expected that these spaces within [...] Read more.
Analyses of protein structures have shown the existence of molecular channels in enzymes from Prokaryotes. Those molecular channels suggest a critical role of spatial voids in proteins, above all, in those enzymes functioning under high temperature. It is expected that these spaces within the protein structure are required to access the active site and to maximize availability and thermal stability of their substrates and cofactors. Interestingly, numerous substrates and cofactors have been reported to be highly temperature-sensitive biomolecules. Methanogens represent a singular phylogenetic group of Archaea that performs anaerobic respiration producing methane during growth. Methanogens inhabit a variety of environments including the full range of temperatures for the known living forms. Herein, we carry out a dimensional analysis of molecular tunnels in key enzymes of the methanogenic pathway from methanogenic Archaea growing optimally over a broad temperature range. We aim to determine whether the dimensions of the molecular tunnels are critical for those enzymes from thermophiles. Results showed that at increasing growth temperature the dimensions of molecular tunnels in the enzymes methyl-coenzyme M reductase and heterodisulfide reductase become increasingly restrictive and present strict limits at the highest growth temperatures, i.e., for hyperthermophilic methanogens. However, growth at lower temperature allows a wide dimensional range for the molecular spaces in these enzymes. This is in agreement with previous suggestions on a potential major role of molecular tunnels to maintain biomolecule stability and activity of some enzymes in microorganisms growing at high temperatures. These results contribute to better understand archaeal growth at high temperatures. Furthermore, an optimization of the dimensions of molecular tunnels would represent an important adaptation required to maintain the activity of key enzymes of the methanogenic pathway for those methanogens growing optimally at high temperatures. Full article
(This article belongs to the Special Issue Thermophilic and Hyperthermophilic Microbes and Enzymes 2.0)
Show Figures

Graphical abstract

14 pages, 1711 KiB  
Article
A Genome-Scale Metabolic Model of Methanoperedens nitroreducens: Assessing Bioenergetics and Thermodynamic Feasibility
by Bingqing He, Chen Cai, Tim McCubbin, Jorge Carrasco Muriel, Nikolaus Sonnenschein, Shihu Hu, Zhiguo Yuan and Esteban Marcellin
Metabolites 2022, 12(4), 314; https://doi.org/10.3390/metabo12040314 - 31 Mar 2022
Cited by 7 | Viewed by 3299
Abstract
Methane is an abundant low-carbon fuel that provides a valuable energy resource, but it is also a potent greenhouse gas. Therefore, anaerobic oxidation of methane (AOM) is an essential process with central features in controlling the carbon cycle. Candidatus ‘Methanoperedens nitroreducens’ (M. nitroreducens) [...] Read more.
Methane is an abundant low-carbon fuel that provides a valuable energy resource, but it is also a potent greenhouse gas. Therefore, anaerobic oxidation of methane (AOM) is an essential process with central features in controlling the carbon cycle. Candidatus ‘Methanoperedens nitroreducens’ (M. nitroreducens) is a recently discovered methanotrophic archaeon capable of performing AOM via a reverse methanogenesis pathway utilizing nitrate as the terminal electron acceptor. Recently, reverse methanogenic pathways and energy metabolism among anaerobic methane-oxidizing archaea (ANME) have gained significant interest. However, the energetics and the mechanism for electron transport in nitrate-dependent AOM performed by M. nitroreducens is unclear. This paper presents a genome-scale metabolic model of M. nitroreducens, iMN22HE, which contains 813 reactions and 684 metabolites. The model describes its cellular metabolism and can quantitatively predict its growth phenotypes. The essentiality of the cytoplasmic heterodisulfide reductase HdrABC in the reverse methanogenesis pathway is examined by modeling the electron transfer direction and the specific energy-coupling mechanism. Furthermore, based on better understanding electron transport by modeling, a new energy transfer mechanism is suggested. The new mechanism involves reactions capable of driving the endergonic reactions in nitrate-dependent AOM, including the step reactions in reverse canonical methanogenesis and the novel electron-confurcating reaction HdrABC. The genome metabolic model not only provides an in silico tool for understanding the fundamental metabolism of ANME but also helps to better understand the reverse methanogenesis energetics and its thermodynamic feasibility. Full article
(This article belongs to the Special Issue Reconstruction of Genome-Scale Metabolic Models)
Show Figures

Graphical abstract

Back to TopTop