Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = hereditary tyrosinemia type 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3280 KiB  
Article
Validation of Clinical-Grade Electroporation Systems for CRISPR-Cas9-Mediated Gene Therapy in Primary Hepatocytes for the Correction of Inherited Metabolic Liver Disease
by Justin Gibson, Abishek Dhungana, Menam Pokhrel, Benjamin Arthur, Pramita Suresh, Olumide Adebayo and Renee N. Cottle
Cells 2025, 14(10), 711; https://doi.org/10.3390/cells14100711 - 14 May 2025
Viewed by 878
Abstract
Hepatocyte transplantation (HTx) combined with ex vivo gene therapy has garnered significant interest due to its potential for treating many inherited metabolic liver diseases. The biggest obstacle for HTx is achieving sufficient engraftment levels to rescue diseased phenotypes, which becomes more challenging when [...] Read more.
Hepatocyte transplantation (HTx) combined with ex vivo gene therapy has garnered significant interest due to its potential for treating many inherited metabolic liver diseases. The biggest obstacle for HTx is achieving sufficient engraftment levels to rescue diseased phenotypes, which becomes more challenging when combined with ex vivo gene editing techniques. However, recent technological advancements have improved electroporation delivery efficiency, cell viability, and scalability for cell therapy. We recently demonstrated the impacts of electroporation for cell-based gene therapy in a mouse model of hereditary tyrosinemia type 1 (HT1). Here, we explore the use of the clinical-grade electroporator, the MaxCyte ExPERT GTx, utilized in the first FDA-approved CRISPR therapy, Casgevy, and evaluate its potential in primary hepatocytes in terms of delivery efficiency and cell viability. We assessed the gene editing efficiency and post-transplantation engraftment of hepatocytes from mTmG mice electroporated with CRISPR-Cas9-ribonucleoproteins (RNPs) targeting 4-hydroxyphenylpyruvate dioxygenase (Hpd) in a fumarylacetoacetate hydrolase (Fah)-deficient mouse model of HT1. After surgery, Fah-/- graft recipients were cycled off and on nitisinone to achieve independence from drug-induced Hpd inhibition, an indicator of HT1 disease correction. Transplanted hepatocytes subjected to electroporation using the GTx system had a cell viability of 89.9% and 100% on-target gene editing efficiency. Recipients transplanted with GTx-electroporated cells showed a smaller weight reduction than controls transplanted with untransfected cells (7.9% and 13.8%, respectively). Further, there were no mortalities in the GTx-recipient mice, whereas there was 25% mortality in the control recipients. Mean donor cell engraftment was significantly higher in GTx-recipient mice compared to untransfected control recipients (97.9% and 81.6%, respectively). Our results indicate that the GTx system does not negatively impact hepatocyte functionality and engraftment potential, thereby demonstrating the promise of GTx electroporation in hepatocytes as a viable cell therapy for treating genetic diseases that affect the liver. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing in Translational Research—Third Edition)
Show Figures

Figure 1

17 pages, 3604 KiB  
Article
Integrating Machine Learning and Follow-Up Variables to Improve Early Detection of Hepatocellular Carcinoma in Tyrosinemia Type 1: A Multicenter Study
by Karen Fuenzalida, María Jesús Leal-Witt, Alejandro Acevedo, Manuel Muñoz, Camila Gudenschwager, Carolina Arias, Juan Francisco Cabello, Giancarlo La Marca, Cristiano Rizzo, Andrea Pietrobattista, Marco Spada, Carlo Dionisi-Vici and Verónica Cornejo
Int. J. Mol. Sci. 2025, 26(8), 3839; https://doi.org/10.3390/ijms26083839 - 18 Apr 2025
Viewed by 617
Abstract
Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to detect liver cancer but has limitations [...] Read more.
Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to detect liver cancer but has limitations in early-stage HCC detection. This study aimed to implement a machine-learning (ML) approach to identify the most relevant laboratory variables to predict AFP alteration using constrained multidimensional data from Chilean and Italian HT-1 cohorts. A longitudinal retrospective study analyzed 219 records from 35 HT-1 patients, including 8 with HCC and 5 diagnosed through newborn screening. The dataset contained biochemical and demographic variables that were analyzed using the eXtreme Gradient Boosting algorithm, which was trained to predict abnormal AFP levels (>5 ng/mL). Four key variables emerged as significant predictors: alanine transaminase (ALT), alkaline phosphatase, age at diagnosis, and current age. ALT emerged as the most promising indicator of AFP alteration, potentially preceding AFP level changes and improving HCC detection specificity at a cut-off value of 29 UI/L (AUROC = 0.73). Despite limited data from this rare disease, the ML approach successfully analyzed follow-up biomarkers, identifying ALT as an early predictor of AFP elevation and a potential biomarker for HCC progression. Full article
(This article belongs to the Special Issue New Insights in Translational Bioinformatics: Second Edition)
Show Figures

Figure 1

33 pages, 592 KiB  
Review
Progress in Gene Therapy for Hereditary Tyrosinemia Type 1
by Helen Thomas and Robert C. Carlisle
Pharmaceutics 2025, 17(3), 387; https://doi.org/10.3390/pharmaceutics17030387 - 18 Mar 2025
Viewed by 1394
Abstract
Hereditary Tyrosinemia Type-1 (HT1), an inherited error of metabolism caused by a mutation in the fumarylacetoacetate hydrolase gene, is associated with liver disease, severe morbidity, and early mortality. The use of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) has almost eradicated the acute HT1 symptoms and childhood mortality. [...] Read more.
Hereditary Tyrosinemia Type-1 (HT1), an inherited error of metabolism caused by a mutation in the fumarylacetoacetate hydrolase gene, is associated with liver disease, severe morbidity, and early mortality. The use of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) has almost eradicated the acute HT1 symptoms and childhood mortality. However, patient outcomes remain unsatisfactory due to the neurocognitive effects of NTBC and the requirement for a strict low-protein diet. Gene therapy (GT) offers a potential single-dose cure for HT1, and there is now abundant preclinical data showing how a range of vector-nucleotide payload combinations could be used with curative intent, rather than continued reliance on amelioration. Unfortunately, there have been no HT1-directed clinical trials reported, and so it is unclear which promising pre-clinical approach has the greatest chance of successful translation. Here, to fill this knowledge gap, available HT1 preclinical data and available clinical trial data pertaining to liver-directed GT for other diseases are reviewed. The aim is to establish which vector-payload combination has the most potential as a one-dose HT1 cure. Analysis provides a strong case for progressing lentiviral-based approaches into clinical trials. However, other vector-payload combinations may be more scientifically and commercially viable, but these options require additional investigation. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

9 pages, 769 KiB  
Case Report
A Lithuanian Case of Tyrosinemia Type 1 with a Literature Review: A Rare Cause of Acute Liver Failure in Childhood
by Rūta Rokaitė, Agnė Čibirkaitė, Vykinta Zeleckytė, Gabija Lazdinytė and Mindaugas Dženkaitis
Medicina 2024, 60(1), 135; https://doi.org/10.3390/medicina60010135 - 11 Jan 2024
Cited by 1 | Viewed by 2572
Abstract
Hereditary type 1 tyrosinemia (HT1) is a rare inherited autosomal recessive disorder of tyrosine metabolism, characterized by progressive liver damage, dysfunction of kidney tubules, and neurological crises. In the course of this disease, due to the deficiency of the enzyme fumarylacetoacetate hydrolase (FAH), [...] Read more.
Hereditary type 1 tyrosinemia (HT1) is a rare inherited autosomal recessive disorder of tyrosine metabolism, characterized by progressive liver damage, dysfunction of kidney tubules, and neurological crises. In the course of this disease, due to the deficiency of the enzyme fumarylacetoacetate hydrolase (FAH), toxic intermediate metabolites of tyrosine breakdown, such as fumarylacetoacetate (FAA), succinylacetoacetate (SAA), and succinylacetone (SA), accumulate in liver and kidney cells, causing cellular damage. Because of this, an increased SA concentration in the blood or urine is pathognomonic of HT1. In the year 2000, HT1 was diagnosed in Lithuania for the first time, and this was the first time when a specific treatment for HT1 was administered in the country. Over two decades, four cases of this disease have been diagnosed in Lithuania. In the first of these patients, the disease was diagnosed in infancy, manifesting as liver damage with liver failure. Treatment with nitisinone was initiated, which continues to be administered, maintaining normal liver function. Liver transplantation was performed on two subsequent patients due to complications of HT1. It is crucial to diagnose HT1 as early as possible in order to reduce or completely eliminate complications related to the disease, including progressive liver failure and kidney dysfunction, among others. This can only be achieved by conducting a universal newborn screening for tyrosinemia and by starting treatment with nitisinone (NTBC) before the age of 1 month in all cases of HT1. However, in those countries where this screening is not being carried out, physicians must be aware of and consider this highly rare disorder. They should be vigilant, paying attention to even minimal changes in a few specific laboratory test results—such as unexplained anemia alongside neutropenia and thrombocytopenia—and should conduct more detailed examinations to determine the causes of these changes. In this article, we present the latest clinical case of HT1 in Lithuania, diagnosed at the Children’s Diseases’ Clinic of the Lithuanian University of Health Sciences (LUHS) Hospital Kaunas Clinics. The case manifested as life-threatening acute liver failure in early childhood. This article explores and discusses the peculiarities of diagnosing this condition in the absence of universal newborn screening for tyrosinemia in the country, as well as the course, treatment, and ongoing monitoring of patients with this disorder. Full article
(This article belongs to the Special Issue Medical Imaging in Hepatology)
Show Figures

Figure 1

15 pages, 2536 KiB  
Article
Hereditary Tyrosinemia Type 1 Mice under Continuous Nitisinone Treatment Display Remnants of an Uncorrected Liver Disease Phenotype
by Jessie Neuckermans, Sien Lequeue, Paul Claes, Anja Heymans, Juliette H. Hughes, Haaike Colemonts-Vroninks, Lionel Marcélis, Georges Casimir, Philippe Goyens, Geert A. Martens, James A. Gallagher, Tamara Vanhaecke, George Bou-Gharios and Joery De Kock
Genes 2023, 14(3), 693; https://doi.org/10.3390/genes14030693 - 11 Mar 2023
Cited by 2 | Viewed by 6202
Abstract
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic [...] Read more.
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC). Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme, rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1 patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye, blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in molecular pathways associated to the development and progression of HT1-driven liver disease that remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic disorder reference disease with non-hepatic manifestations. The differentially expressed genes were enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC development was identified that was differentially regulated in HT1 vs. AKU mouse livers under NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1 but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC. Full article
(This article belongs to the Special Issue Identifying the Molecular Basis of Rare Genetic Diseases)
Show Figures

Figure 1

13 pages, 768 KiB  
Review
Genome Editing Using CRISPR-Cas9 and Autoimmune Diseases: A Comprehensive Review
by Min Ho Lee, Jae Il Shin, Jae Won Yang, Keum Hwa Lee, Do Hyeon Cha, Jun Beom Hong, Yeoeun Park, Eugene Choi, Kalthoum Tizaoui, Ai Koyanagi, Louis Jacob, Seoyeon Park, Ji Hong Kim and Lee Smith
Int. J. Mol. Sci. 2022, 23(3), 1337; https://doi.org/10.3390/ijms23031337 - 25 Jan 2022
Cited by 40 | Viewed by 12012
Abstract
Autoimmune diseases are disorders that destruct or disrupt the body’s own tissues by its own immune system. Several studies have revealed that polymorphisms of multiple genes are involved in autoimmune diseases. Meanwhile, gene therapy has become a promising approach in autoimmune diseases, and [...] Read more.
Autoimmune diseases are disorders that destruct or disrupt the body’s own tissues by its own immune system. Several studies have revealed that polymorphisms of multiple genes are involved in autoimmune diseases. Meanwhile, gene therapy has become a promising approach in autoimmune diseases, and clustered regularly interspaced palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) has become one of the most prominent methods. It has been shown that CRISPR-Cas9 can be applied to knock out proprotein convertase subtilisin/kexin type 9 (PCSK9) or block PCSK9, resulting in lowering low-density lipoprotein cholesterol. In other studies, it can be used to treat rare diseases such as ornithine transcarbamylase (OTC) deficiency and hereditary tyrosinemia. However, few studies on the treatment of autoimmune disease using CRISPR-Cas9 have been reported so far. In this review, we highlight the current and potential use of CRISPR-Cas9 in the management of autoimmune diseases. We summarize the potential target genes for immunomodulation using CRISPR-Cas9 in autoimmune diseases including rheumatoid arthritis (RA), inflammatory bowel diseases (IBD), systemic lupus erythematosus (SLE), multiple sclerosis (MS), type 1 diabetes mellitus (DM), psoriasis, and type 1 coeliac disease. This article will give a new perspective on understanding the use of CRISPR-Cas9 in autoimmune diseases not only through animal models but also in human models. Emerging approaches to investigate the potential target genes for CRISPR-Cas9 treatment may be promising for the tailored immunomodulation of some autoimmune diseases in the near future. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1424 KiB  
Article
NTBC Treatment Monitoring in Chilean Patients with Tyrosinemia Type 1 and Its Association with Biochemical Parameters and Liver Biomarkers
by Karen Fuenzalida, María Jesús Leal-Witt, Patricio Guerrero, Valerie Hamilton, María Florencia Salazar, Felipe Peñaloza, Carolina Arias and Verónica Cornejo
J. Clin. Med. 2021, 10(24), 5832; https://doi.org/10.3390/jcm10245832 - 13 Dec 2021
Cited by 4 | Viewed by 2526
Abstract
Treatment and follow-up in Hereditary Tyrosinemia type 1 (HT-1) patients require comprehensive clinical and dietary management, which involves drug therapy with NTBC and the laboratory monitoring of parameters, including NTBC levels, succinylacetone (SA), amino acids, and various biomarkers of liver and kidney function. [...] Read more.
Treatment and follow-up in Hereditary Tyrosinemia type 1 (HT-1) patients require comprehensive clinical and dietary management, which involves drug therapy with NTBC and the laboratory monitoring of parameters, including NTBC levels, succinylacetone (SA), amino acids, and various biomarkers of liver and kidney function. Good adherence to treatment and optimal adjustment of the NTBC dose, according to clinical manifestations and laboratory parameters, can prevent severe liver complications such as hepatocarcinogenesis (HCC). We analyzed several laboratory parameters for 15 HT-1 patients over one year of follow-up in a cohort that included long-term NTBC-treated patients (more than 20 years), as well as short-term patients (one year). Based on this analysis, we described the overall adherence by our cohort of 70% adherence to drug and dietary treatment. A positive correlation was found between blood and plasma NTBC concentration with a conversion factor of 2.57. Nonetheless, there was no correlation of the NTBC level with SA levels, αFP, liver biomarkers, and amino acids in paired samples analysis. By separating according to the range of the NTBC concentration, we therefore determined the mean concentration of each biochemical marker, for NTBC ranges above 15–25 μmol/L. SA in urine and αFP showed mean levels within controlled parameters in our group of patients. Future studies analyzing a longer follow-up period, as well as SA determination in the blood, are encouraged to confirm the present findings. Full article
(This article belongs to the Special Issue Biomarkers in Genetic Metabolic Disorders)
Show Figures

Figure 1

16 pages, 4355 KiB  
Article
Oxidative Stress, Glutathione Metabolism, and Liver Regeneration Pathways Are Activated in Hereditary Tyrosinemia Type 1 Mice upon Short-Term Nitisinone Discontinuation
by Haaike Colemonts-Vroninks, Jessie Neuckermans, Lionel Marcelis, Paul Claes, Steven Branson, Georges Casimir, Philippe Goyens, Geert A. Martens, Tamara Vanhaecke and Joery De Kock
Genes 2021, 12(1), 3; https://doi.org/10.3390/genes12010003 - 22 Dec 2020
Cited by 9 | Viewed by 7573
Abstract
Hereditary tyrosinemia type 1 (HT1) is an inherited condition in which the body is unable to break down the amino acid tyrosine due to mutations in the fumarylacetoacetate hydrolase (FAH) gene, coding for the final enzyme of the tyrosine degradation pathway. As a [...] Read more.
Hereditary tyrosinemia type 1 (HT1) is an inherited condition in which the body is unable to break down the amino acid tyrosine due to mutations in the fumarylacetoacetate hydrolase (FAH) gene, coding for the final enzyme of the tyrosine degradation pathway. As a consequence, HT1 patients accumulate toxic tyrosine derivatives causing severe liver damage. Since its introduction, the drug nitisinone (NTBC) has offered a life-saving treatment that inhibits the upstream enzyme 4-hydroxyphenylpyruvate dioxygenase (HPD), thereby preventing production of downstream toxic metabolites. However, HT1 patients under NTBC therapy remain unable to degrade tyrosine. To control the disease and side-effects of the drug, HT1 patients need to take NTBC as an adjunct to a lifelong tyrosine and phenylalanine restricted diet. As a consequence of this strict therapeutic regime, drug compliance issues can arise with significant influence on patient health. In this study, we investigated the molecular impact of short-term NTBC therapy discontinuation on liver tissue of Fah-deficient mice. We found that after seven days of NTBC withdrawal, molecular pathways related to oxidative stress, glutathione metabolism, and liver regeneration were mostly affected. More specifically, NRF2-mediated oxidative stress response and several toxicological gene classes related to reactive oxygen species metabolism were significantly modulated. We observed that the expression of several key glutathione metabolism related genes including Slc7a11 and Ggt1 was highly increased after short-term NTBC therapy deprivation. This stress response was associated with the transcriptional activation of several markers of liver progenitor cells including Atf3, Cyr61, Ddr1, Epcam, Elovl7, and Glis3, indicating a concreted activation of liver regeneration early after NTBC withdrawal. Full article
Show Figures

Figure 1

22 pages, 1072 KiB  
Article
Heat Shock Response Associated with Hepatocarcinogenesis in a Murine Model of Hereditary Tyrosinemia Type I
by Francesca Angileri, Geneviève Morrow, Vincent Roy, Diana Orejuela and Robert M. Tanguay
Cancers 2014, 6(2), 998-1019; https://doi.org/10.3390/cancers6020998 - 23 Apr 2014
Cited by 10 | Viewed by 12938
Abstract
Hereditary Tyrosinemia type 1 (HT1) is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH), an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic [...] Read more.
Hereditary Tyrosinemia type 1 (HT1) is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH), an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethyl)benzoyl] cyclohexane-1,3-dione). However despite the treatment, chronic hepatopathy and development of hepatocellular carcinoma (HCC) are still observed in some HT1 patients. Growing evidence show the important role of heat shock proteins (HSPs) in many cellular processes and their involvement in pathological diseases including cancer. Their survival-promoting effect by modulation of the apoptotic machinery is often correlated with poor prognosis and resistance to therapy in a number of cancers. Here, we sought to gain insight into the pathophysiological mechanisms associated with liver dysfunction and tumor development in a murine model of HT1. Differential gene expression patterns in livers of mice under HT1 stress, induced by drug retrieval, have shown deregulation of stress and cell death resistance genes. Among them, genes coding for HSPB and HSPA members, and for anti-apoptotic BCL-2 related mitochondrial proteins were associated with the hepatocarcinogenetic process. Our data highlight the variation of stress pathways related to HT1 hepatocarcinogenesis suggesting the role of HSPs in rendering tyrosinemia-affected liver susceptible to the development of HCC. Full article
(This article belongs to the Special Issue Heat Shock Proteins in Cancer: Chaperones of Tumorigenesis)
Show Figures

Figure 1

Back to TopTop