Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = hepatic mature functions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5584 KiB  
Article
Recovery of Lysosomal Acidification and Autophagy Flux by Attapulgite Nanorods: Therapeutic Potential for Lysosomal Disorders
by Yuanjing Hao, Xinru Fan, Xiaodan Huang, Zhaoying Li, Zhiyuan Jing, Guilong Zhang, Yuxue Xu, Na Zhang and Pengfei Wei
Biomolecules 2025, 15(5), 728; https://doi.org/10.3390/biom15050728 - 16 May 2025
Viewed by 732
Abstract
Dysfunction of the lysosome and autophagy–lysosome pathway is closely associated with various diseases, such as neurodegenerative diseases, non-alcoholic fatty liver disease (NAFLD), etc. Additionally, chloroquine is a clinically widely used drug for treating malaria and autoimmune diseases, but long-term or high-dose administration may [...] Read more.
Dysfunction of the lysosome and autophagy–lysosome pathway is closely associated with various diseases, such as neurodegenerative diseases, non-alcoholic fatty liver disease (NAFLD), etc. Additionally, chloroquine is a clinically widely used drug for treating malaria and autoimmune diseases, but long-term or high-dose administration may lead to significant toxic side effects. Attapulgite (ATT), a natural nanomaterial with excellent adsorption capacity and biocompatibility, herein demonstrated a novel biological function in regulating the lysosomal and autophagy–lysosome pathway. ATT could be effectively internalized into lysosome-related acidic compartments. Further study revealed that ATT could restore lysosomal pH, activate cathepsin D, alleviate autophagy blockage in chloroquine-treated cells, and reduce chloroquine-elicited cell death. In a cell model related to Huntington’s disease, treatment with ATT reinforced the degradation of the mutant huntingtin proteins by increasing cathepsin D maturation and autophagy flux. ATT could also promote lipid droplet clearance in hepatocytes with palmitic acid-induced steatosis, reduce hepatic lipid accumulation, and improve fasting blood glucose in high-fat-diet-induced NAFLD mice. These findings establish ATT as a lysosomal modulator, providing a foundation for its therapeutic potential in mitigating the adverse effects associated with long-term chloroquine use, especially improving neurodegenerative and metabolic disorders. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

18 pages, 4226 KiB  
Article
Tissue-Specific Transcriptomic Responses to Avian Reovirus Inoculation in Ovo
by Zubair Khalid, Shahna Fathima and Ruediger Hauck
Viruses 2025, 17(5), 646; https://doi.org/10.3390/v17050646 - 29 Apr 2025
Viewed by 558
Abstract
Avian reovirus (ARV) infections significantly impact the global poultry industry, but host responses across infection models remain poorly characterized. Using specific-pathogen-free chicken embryos, this study examined tissue-specific transcriptomic changes following in ovo inoculation with two doses of ARV S1133 at embryonic day 18. [...] Read more.
Avian reovirus (ARV) infections significantly impact the global poultry industry, but host responses across infection models remain poorly characterized. Using specific-pathogen-free chicken embryos, this study examined tissue-specific transcriptomic changes following in ovo inoculation with two doses of ARV S1133 at embryonic day 18. Quantitative PCR confirmed dose- and time-dependent viral replication, with the liver exhibiting the highest viral load at 24 h post-inoculation (hpi), whereas the kidneys, intestines, and bursa were only positive at 48 hpi with the higher viral dose. Transcriptomic profiling revealed the intestines mounted an extensive gene expression response, implicating early immune activation. Liver samples demonstrated strong upregulation of antiviral pathways, including interferon signaling and viral replication inhibition, while kidneys and intestines were enriched for coagulation and wound healing pathways. The bursae exhibited minimal immunity-related responses, suggesting insufficient maturation. Functional analyses confirmed tissue-specific immune and metabolic adaptations to infection. These findings indicate that ARV replication efficiency and host molecular responses are dose-, tissue-, and time-dependent. Notably, intestinal responses suggest preemptive immune engagement, while hepatic antiviral mechanisms may play a critical role in restricting viral spread. This study establishes foundational knowledge of host molecular responses to ARV in late-stage embryos, with implications for in ovo vaccination and early immunity. Full article
(This article belongs to the Special Issue Avian Reovirus)
Show Figures

Figure 1

22 pages, 15226 KiB  
Article
Single-Cell Sequencing Reveals the Heterogeneity of Hepatic Natural Killer Cells and Identifies the Cytotoxic Natural Killer Subset in Schistosomiasis Mice
by Fangfang Xu, Yuan Gao, Teng Li, Tingting Jiang, Xiaoying Wu, Zhihao Yu, Jing Zhang, Yuan Hu and Jianping Cao
Int. J. Mol. Sci. 2025, 26(7), 3211; https://doi.org/10.3390/ijms26073211 - 30 Mar 2025
Cited by 1 | Viewed by 730
Abstract
Schistosoma japonicum eggs in the host liver form granuloma and liver fibrosis and then lead to portal hypertension and cirrhosis, seriously threatening human health. Natural killer (NK) cells can kill activated hepatic stellate cells (HSCs) against hepatic fibrosis. We used single-cell sequencing to [...] Read more.
Schistosoma japonicum eggs in the host liver form granuloma and liver fibrosis and then lead to portal hypertension and cirrhosis, seriously threatening human health. Natural killer (NK) cells can kill activated hepatic stellate cells (HSCs) against hepatic fibrosis. We used single-cell sequencing to screen hepatic NK cell subsets against schistosomiasis liver fibrosis. Hepatic NK cells were isolated from uninfected mice and mice infected for four and six weeks. The NK cells underwent single-cell sequencing. The markers’ expression in the NK subsets was detected through Reverse Transcription–Quantitative PCR (RT-qPCR). The proportion and granzyme B (Gzmb) expression of the total NK and Thy1+NK were detected. NK cells overexpressing Thy1 (Thy1-OE) were constructed, and functions were detected. The results revealed that the hepatic NK cells could be divided into mature, immature, regulatory-like, and memory-like NK cells and re-clustered into ten subsets. C3 (Cx3cr1+NK) and C4 (Thy1+NK) increased at week four post-infection, and other subsets decreased continuously. The successfully constructed Thy1-OE NK cells had significantly higher effector molecules and induced greater HSC apoptosis than the control NK cells. It revealed a pattern of hepatic NK cells in a mouse model of schistosomiasis. The Thy1+NK cells could be used as target cells against hepatic fibrosis. Full article
(This article belongs to the Special Issue Molecular Biology of Host and Pathogen Interactions: 2nd Edition)
Show Figures

Figure 1

23 pages, 1871 KiB  
Review
Microgravity and Cellular Biology: Insights into Cellular Responses and Implications for Human Health
by Nelson Adolfo López Garzón, María Virginia Pinzón-Fernández, Jhan S. Saavedra T., Humberto A. Nati-Castillo, Marlon Arias-Intriago, Camila Salazar-Santoliva and Juan S. Izquierdo-Condoy
Int. J. Mol. Sci. 2025, 26(7), 3058; https://doi.org/10.3390/ijms26073058 - 27 Mar 2025
Cited by 2 | Viewed by 1727
Abstract
Microgravity, defined by minimal gravitational forces, represents a unique environment that profoundly influences biological systems, including human cells. This review examines the effects of microgravity on biological processes and their implications for human health. Microgravity significantly impacts the immune system by disrupting key [...] Read more.
Microgravity, defined by minimal gravitational forces, represents a unique environment that profoundly influences biological systems, including human cells. This review examines the effects of microgravity on biological processes and their implications for human health. Microgravity significantly impacts the immune system by disrupting key mechanisms, such as T cell activation, cytokine production, and macrophage differentiation, leading to increased susceptibility to infections. In cancer biology, it promotes the formation of spheroids in cancer stem cells and thyroid cancer cells, which closely mimic in vivo tumor dynamics, providing novel insights for oncology research. Additionally, microgravity enhances tissue regeneration by modulating critical pathways, including Hippo and PI3K-Akt, thereby improving stem cell differentiation into hematopoietic and cardiomyocyte lineages. At the organ level, microgravity induces notable changes in hepatic metabolism, endothelial function, and bone mechanotransduction, contributing to lipid dysregulation, vascular remodeling, and accelerated bone loss. Notably, cardiomyocytes derived from human pluripotent stem cells and cultured under microgravity exhibit enhanced mitochondrial biogenesis, improved calcium handling, and advanced structural maturation, including increased sarcomere length and nuclear eccentricity. These advancements enable the development of functional cardiomyocytes, presenting promising therapeutic opportunities for treating cardiac diseases, such as myocardial infarctions. These findings underscore the dual implications of microgravity for space medicine and terrestrial health. They highlight its potential to drive advances in regenerative therapies, oncology, and immunological interventions. Continued research into the biological effects of microgravity is essential for protecting astronaut health during prolonged space missions and fostering biomedical innovations with transformative applications on Earth. Full article
Show Figures

Figure 1

18 pages, 3452 KiB  
Article
Proteomic Analysis Reveals That Dietary Supplementation with Fish Oil Enhances Lipid Metabolism and Improves Antioxidant Capacity in the Liver of Female Scatophagus argus
by Jingwei He, He Ma, Dongneng Jiang, Tuo Wang, Zhiyuan Li, Gang Shi, Yucong Hong, Chunhua Zhu and Guangli Li
Fishes 2025, 10(3), 128; https://doi.org/10.3390/fishes10030128 - 15 Mar 2025
Viewed by 684
Abstract
The impact of dietary lipid sources on nutrient metabolism and reproductive development is a critical focus in aquaculture broodstock nutrition. Previous studies have demonstrated that fish oil supplementation modulates the expression of genes involved in steroid hormone synthesis, glucose, and lipid metabolism promoting [...] Read more.
The impact of dietary lipid sources on nutrient metabolism and reproductive development is a critical focus in aquaculture broodstock nutrition. Previous studies have demonstrated that fish oil supplementation modulates the expression of genes involved in steroid hormone synthesis, glucose, and lipid metabolism promoting ovarian development in female Scatophagus argus (spotted scat). However, the effects of fish oil on hepatic function at the protein level remain poorly characterized. In this study, female S. argus were fed diets containing 8% fish oil (FO, experimental group) or 8% soybean oil (SO, control group) for 60 days. Comparative proteomic analysis of liver tissue identified significant differential protein expression between groups. The FO group exhibited upregulation of lipid metabolism-related proteins, including COMM domain-containing protein 1 (Commd1), tetraspanin 8 (Tspan8), myoglobin (Mb), transmembrane protein 41B (Tmem41b), stromal cell-derived factor 2-like protein 1 (Sdf2l1), and peroxisomal biogenesis factor 5 (Pex5). Additionally, glucose metabolism-associated proteins, such as Sdf2l1 and non-POU domain-containing octamer-binding protein (Nono), were elevated in the FO group. Moreover, proteins linked to inflammation and antioxidant responses, including G protein-coupled receptor 108 (Gpr108), protein tyrosine phosphatase non-receptor type 2 (Ptpn2), Pex5, p120 catenin (Ctnnd1), tripartite motif-containing protein 16 (Trim16), and aquaporin 11 (Aqp11), were elevated in the FO group, while proteins involved in oxidative stress, such as reactive oxygen species modulator 1 (Romo1), cathepsin A (Ctsa), and Cullin 4A (Cul4a), were downregulated. These proteomic findings align with prior transcriptomic data, indicating that dietary fish oil enhances hepatic lipid metabolism, mitigates oxidative stress, and strengthens antioxidant capacity. Furthermore, these hepatic adaptations may synergistically support ovarian maturation in S. argus. This study provides novel proteomic-level evidence supporting the role of fish oil in modulating hepatic lipid and energy metabolism, thereby elucidating the role of fish oil in optimizing hepatic energy metabolism and redox homeostasis to influence reproductive processes, advancing our understanding of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in teleost liver physiology. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

16 pages, 6726 KiB  
Article
Maternal MitoQ Treatment Is Protective Against Programmed Alterations in CYP Activity Due to Antenatal Dexamethasone
by Millicent G. A. Bennett, Ashley S. Meakin, Kimberley J. Botting-Lawford, Youguo Niu, Sage G. Ford, Michael P. Murphy, Michael D. Wiese, Dino A. Giussani and Janna L. Morrison
Pharmaceutics 2025, 17(3), 285; https://doi.org/10.3390/pharmaceutics17030285 - 22 Feb 2025
Viewed by 1152
Abstract
Background/Objectives: In pregnancy threatened by preterm birth, antenatal corticosteroids (ACS) are administered to accelerate fetal lung maturation. However, they have side effects, including the production of reactive oxygen species that can impact cytochrome P450 (CYP) activity. We hypothesised that antioxidants could protect [...] Read more.
Background/Objectives: In pregnancy threatened by preterm birth, antenatal corticosteroids (ACS) are administered to accelerate fetal lung maturation. However, they have side effects, including the production of reactive oxygen species that can impact cytochrome P450 (CYP) activity. We hypothesised that antioxidants could protect a fetus treated with ACS during gestation and prevent the programming of altered hepatic CYP activity in the offspring. The primary outcome of our study was the impact of different maternal treatments on the activity of hepatic drug-metabolising enzymes in offspring. Methods: At 100 ± 1 days gestational age (dGA, term = 147 dGA), 73 ewes were randomly allocated to the following: saline (5 mL IV daily 105–137 ± 2 dGA, n = 17), ACS (Dexamethasone (Dex); 12 mg IM at 115 and 116 dGA; n = 25), MitoQ (6 mg/kg MS010 IV, daily bolus 105–137 ± 2 dGA; n = 17) or Dex and MitoQ (Dex+MitoQ; n = 14). CYP activity and protein abundance were assessed using functional assays and Western blot. Results: Dex decreased the hepatic activity of fetal CYP3A (−56%, PDex = 0.0322), and 9 mo lamb CYP1A2 (−22%, PDex = 0.0003), CYP2B6 (−36%, PDex = 0.0234), CYP2C8 (−34%, PDex = 0.0493) and CYP2E1 (−57%, PDex = 0.0009). For all, except CYP1A2, activity returned to control levels with Dex+MitoQ in 9 mo lambs. In 9 mo lambs, MitoQ alone increased activity of CYP2B6 (+16%, PMitoQ = 0.0011) and CYP3A (midazolam, +25%, PMitoQ = 0.0162) and increased CAT expression (PMitoQ = 0.0171). Dex+MitoQ increased CYP3A4/5 activity (testosterone, +65%, PIntx < 0.0003), decreased CYP1A2 activity (−14%, PIntx = 0.0036) and decreased mitochondrial abundance (PIntx = 0.0051). All treatments decreased fetal hepatic DRP1, a regulator of mitochondrial fission (PDex = 0.0055, PMitoQ = 0.0006 and PIntx = 0.0034). Conclusions: Antenatal Dex reduced activity of only one CYP in the fetus but programmed the reduced activity of several hepatic CYPs in young adult offspring, and this effect was ameliorated by combination with MitoQ. Full article
(This article belongs to the Special Issue Pharmacokinetics of Drugs in Pregnancy and Lactation)
Show Figures

Graphical abstract

17 pages, 3919 KiB  
Article
Long-Term Aerobic Exercise Enhances Hepatoprotection in MAFLD by Modulating Exosomal miR-324 via ROCK1
by Yang Zhang, Qiangman Wei, Xue Geng and Guoliang Fang
Metabolites 2024, 14(12), 692; https://doi.org/10.3390/metabo14120692 - 9 Dec 2024
Viewed by 1479
Abstract
Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms—particularly those involving exosomal pathways—are not fully elucidated. Method: Exosomes were isolated from 15 MAFLD patients’ [...] Read more.
Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms—particularly those involving exosomal pathways—are not fully elucidated. Method: Exosomes were isolated from 15 MAFLD patients’ plasma following the final session of a 12-week aerobic exercise intervention. Liver fat content was measured using MRI-PDFF, and metabolic parameters were assessed via OGTT, HOMA-IR, QUICKI, and VO2 max. Co-culture experiments evaluated the effects of exercise-derived exosomes on IR signaling pathways. miRNA microarray analysis identified miR-324, which was quantified in high-fat diet (HFD) mice with and without exercise and compared between athletes and sedentary controls. Functional assays assessed miR-324’s role in glucose and lipid metabolism, while luciferase reporter and Western blot assays confirmed ROCK1 as its direct target. Result: Aerobic exercise significantly reduced liver fat and improved insulin sensitivity in both MAFLD patients and HFD mice. Notably, exosomal miR-324 levels were lower in athletes than sedentary controls, indicating an inverse association with insulin sensitivity. Post-exercise, precursor and mature miR-324 increased in adipose tissue and decreased in muscle, suggesting its adipose origin and inverse regulation. Functional assays demonstrated that miR-324 modulates insulin resistance by targeting ROCK1. Conclusion: Exercise-induced exosomal miR-324 from adipose tissue targets ROCK1, revealing a novel mechanism by which aerobic exercise confers hepatoprotection against insulin resistance in MAFLD. These findings enhance our understanding of how exercise influences metabolic health and may inform future therapeutic strategies for managing MAFLD and related conditions. Full article
Show Figures

Figure 1

17 pages, 2943 KiB  
Article
Biogenesis and Regulation of the Freeze–Thaw Responsive microRNA Fingerprint in Hepatic Tissue of Rana sylvatica
by Hanane Hadj-Moussa, W. Aline Ingelson-Filpula and Kenneth B. Storey
DNA 2024, 4(4), 380-396; https://doi.org/10.3390/dna4040027 - 29 Oct 2024
Viewed by 1132
Abstract
Background: Freeze-tolerant animals undergo significant physiological and biochemical changes to overcome challenges associated with prolonged whole-body freezing. In wood frog Rana sylvatica (now Lithobates sylvaticus), up to 65% of total body water freezes in extracellular ice masses and, during this state of [...] Read more.
Background: Freeze-tolerant animals undergo significant physiological and biochemical changes to overcome challenges associated with prolonged whole-body freezing. In wood frog Rana sylvatica (now Lithobates sylvaticus), up to 65% of total body water freezes in extracellular ice masses and, during this state of suspended animation, it is completely immobile and displays no detectable brain, heart, or respirometry activity. To survive such extensive freezing, frogs integrate various regulatory mechanisms to ensure quick and smooth transitions into or out of this hypometabolic state. One such rapid and reversible regulatory molecule capable of coordinating many aspects of biological functions is microRNA. Herein, we present a large-scale analysis of the biogenesis and regulation of microRNAs in wood frog liver over the course of a freeze–thaw cycle (control, 24 h frozen, and 8 h thawed). Methods/Results: Immunoblotting of key microRNA biogenesis factors showed an upregulation and enhancement of microRNA processing capacity during freezing and thawing. This was followed with RT-qPCR analysis of 109 microRNA species, of which 20 were significantly differentially expressed during freezing and thawing, with the majority being upregulated. Downstream bioinformatics analysis of miRNA/mRNA targeting coupled with in silico protein–protein interactions and functional clustering of biological processes suggested that these microRNAs were suppressing pro-growth functions, including DNA replication, mRNA processing and splicing, protein translation and turnover, and carbohydrate metabolism. Conclusions: Our findings suggest that this enhanced miRNA maturation capacity might be one key factor in the vital hepatic miRNA-mediated suppression of energy-expensive processes needed for long-term survival in a frozen state. Full article
Show Figures

Graphical abstract

15 pages, 2292 KiB  
Review
HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis
by Eloísa Sánchez-Cazorla, Noa Carrera and Miguel Ángel García-González
Int. J. Mol. Sci. 2024, 25(19), 10609; https://doi.org/10.3390/ijms251910609 - 2 Oct 2024
Cited by 2 | Viewed by 3113
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, [...] Read more.
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype–phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care. Full article
(This article belongs to the Special Issue Molecular Research in Chronic Kidney Disease)
Show Figures

Figure 1

14 pages, 2150 KiB  
Article
Comparison of Protective Effects of Polyphenol-Enriched Extracts from Thinned Immature Kiwifruits and Mature Kiwifruits against Alcoholic Liver Disease in Mice
by Wen Deng, Qian-Ni Yang, Ding-Tao Wu, Jie Li, Hong-Yan Liu, Yi-Chen Hu, Liang Zou, Ren-You Gan, Hui-Ling Yan and Jing-Wei Huang
Foods 2024, 13(19), 3072; https://doi.org/10.3390/foods13193072 - 26 Sep 2024
Cited by 1 | Viewed by 1368
Abstract
Alcoholic liver disease (ALD) is regarded as one of the main global health problems. Accumulated evidence indicates that fruit-derived polyphenols can lower the risk of ALD, this attributed to their strong antioxidant capacities. Thinned immature kiwifruits (TIK) are the major agro-byproducts in the [...] Read more.
Alcoholic liver disease (ALD) is regarded as one of the main global health problems. Accumulated evidence indicates that fruit-derived polyphenols can lower the risk of ALD, this attributed to their strong antioxidant capacities. Thinned immature kiwifruits (TIK) are the major agro-byproducts in the production of kiwifruits, which have abundantly valuable polyphenols. However, knowledge about the protective effects of polyphenol-enriched extract from TIK against ALD is still lacking, which ultimately restricts their application as value-added functional products. To promote their potential applications, phenolic compounds from TIK and their corresponding mature fruits were compared, and their protective effects against ALD were studied in the present study. The findings revealed that TIK possessed extremely high levels of total phenolics (116.39 ± 1.51 mg GAE/g DW) and total flavonoids (33.88 ± 0.59 mg RE/g DW), which were about 7.4 times and 4.8 times greater than those of their corresponding mature fruits, respectively. Furthermore, the level of major phenolic components in TIK was measured to be 29,558.19 ± 1170.58 μg/g DW, which was about 5.4 times greater than that of mature fruits. In particular, neochlorogenic acid, epicatechin, procyanidin B1, and procyanidin B2 were found as the predominant polyphenols in TIK. In addition, TIK exerted stronger in vitro antioxidant and anti-inflammatory effects than those of mature fruits, which was probably because of their higher levels of polyphenols. Most importantly, compared with mature fruits, TIK exhibited superior hepatoprotective effects on alcohol-induced liver damage in mice. The administration of polyphenol-enriched extract from TIK (YK) could increase the body weight of mice, reduce the serum levels of ALP, AST, and ALT, lower the levels of hepatic TG and TC, and diminish lipid droplet accumulation and hepatic tissue damage. In addition, the treatment of YK could also significantly restore the levels of antioxidant enzymes (e.g., SOD and CAT) in the liver and lower the levels of hepatic proinflammatory cytokines (e.g., IL-6, IL-1β, and TNF-α), indicating that YK could effectively ameliorate ALD in mice by reducing hepatic oxidative stress and hepatic inflammation. Collectively, our findings can provide sufficient evidence for the development of TIK and their extracts as high value-added functional products for the intervention of ALD. Full article
Show Figures

Figure 1

29 pages, 8268 KiB  
Article
Human Multi-Lineage Liver Organoid Model Reveals Impairment of CYP3A4 Expression upon Repeated Exposure to Graphene Oxide
by Alessio Romaldini, Raffaele Spanò, Marina Veronesi, Benedetto Grimaldi, Tiziano Bandiera and Stefania Sabella
Cells 2024, 13(18), 1542; https://doi.org/10.3390/cells13181542 - 13 Sep 2024
Viewed by 1982
Abstract
Three-dimensional hepatic cell cultures can provide an important advancement in the toxicity assessment of nanomaterials with respect to 2D models. Here, we describe liver organoids (LOs) obtained by assembling multiple cell lineages in a fixed ratio 1:1:0.2. These are upcyte® human hepatocytes, [...] Read more.
Three-dimensional hepatic cell cultures can provide an important advancement in the toxicity assessment of nanomaterials with respect to 2D models. Here, we describe liver organoids (LOs) obtained by assembling multiple cell lineages in a fixed ratio 1:1:0.2. These are upcyte® human hepatocytes, UHHs, upcyte® liver sinusoidal endothelial cells, LSECs, and human bone marrow-derived mesenchymal stromal cells, hbmMSCs. The structural and functional analyses indicated that LOs reached size stability upon ca. 10 days of cultivation (organoid maturation), showing a surface area of approximately 10 mm2 and the hepatic cellular lineages, UHHs and LSECs, arranged to form both primitive biliary networks and sinusoid structures, alike in vivo. LOs did not show signs of cellular apoptosis, senescence, or alteration of hepatocellular functions (e.g., dis-regulation of CYP3A4 or aberrant production of Albumin) for the entire culture period (19 days since organoid maturation). After that, LOs were repeatedly exposed for 19 days to a single or repeated dose of graphene oxide (GO: 2–40 µg/mL). We observed that the treatment did not induce any macroscopic signs of tissue damage, apoptosis activation, and alteration of cell viability. However, in the repeated dose regimen, we observed a down-regulation of CYP3A4 gene expression. Notably, these findings are in line with recent in vivo data, which report a similar impact on CYP3A4 when mice were repeatedly exposed to GO. Taken together, these findings warn of the potential detrimental effects of GO in real-life exposure (e.g., occupational scenario), where its progressive accumulation is likely expected. More in general, this study highlights that LOs formed by many cell lineages can enable repeated exposure regimens (suitable to mimic accumulation); thus, they can be suitably considered alternative or complementary in vitro systems to animal models. Full article
Show Figures

Graphical abstract

12 pages, 2364 KiB  
Case Report
A Korean Family Presenting with Renal Cysts and Maturity-Onset Diabetes of the Young Caused by a Novel In-Frame Deletion of HNF1B
by Ji Yoon Han, Jin Gwack, Tae Yun Kim and Joonhong Park
Int. J. Mol. Sci. 2024, 25(18), 9823; https://doi.org/10.3390/ijms25189823 - 11 Sep 2024
Cited by 1 | Viewed by 1310
Abstract
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, [...] Read more.
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, furthering our understanding of HNF1B-related phenotypes. We conducted sequential genetic testing to investigate the glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas observed in the proband. A comprehensive clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Considering the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous HNF1B variant, c.36_38delCCT/p.(Leu13del) (reference transcript ID: NM_000458.4), as the most likely cause of MODY in the proband. The patient’s clinical presentation was consistent with MODY caused by the HNF1B variant, showing signs of glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas. Sanger sequencing confirmed the same HNF1B variant and established the paternally inherited autosomal dominant status of the heterozygous variant in the patient, as well as in his father and sister. The presence of early-onset diabetes, renal cysts, a family history of the condition, and nephropathy appearing before or after the diagnosis of diabetes mellitus (DM) suggests a diagnosis of HNF1B-MODY5. Early diagnosis is crucial for preventing complications of DM, enabling family screening, providing pre-conceptional genetic counseling, and monitoring kidney function decline. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes)
Show Figures

Figure 1

15 pages, 1305 KiB  
Article
The Tumor Suppressor Par-4 Regulates Adipogenesis by Transcriptional Repression of PPARγ
by James Sledziona, Ravshan Burikhanov, Nathalia Araujo, Jieyun Jiang, Nikhil Hebbar and Vivek M. Rangnekar
Cells 2024, 13(17), 1495; https://doi.org/10.3390/cells13171495 - 5 Sep 2024
Cited by 1 | Viewed by 1855
Abstract
Prostate apoptosis response-4 (Par-4, also known as PAWR) is a ubiquitously expressed tumor suppressor protein that induces apoptosis selectively in cancer cells, while leaving normal cells unaffected. Our previous studies indicated that genetic loss of Par-4 promoted hepatic steatosis, adiposity, and insulin-resistance in [...] Read more.
Prostate apoptosis response-4 (Par-4, also known as PAWR) is a ubiquitously expressed tumor suppressor protein that induces apoptosis selectively in cancer cells, while leaving normal cells unaffected. Our previous studies indicated that genetic loss of Par-4 promoted hepatic steatosis, adiposity, and insulin-resistance in chow-fed mice. Moreover, low plasma levels of Par-4 are associated with obesity in human subjects. The mechanisms underlying obesity in rodents and humans are multi-faceted, and those associated with adipogenesis can be functionally resolved in cell cultures. We therefore used pluripotent mouse embryonic fibroblasts (MEFs) or preadipocyte cell lines responsive to adipocyte differentiation cues to determine the potential role of Par-4 in adipocytes. We report that pluripotent MEFs from Par-4−/− mice underwent rapid differentiation to mature adipocytes with an increase in lipid droplet accumulation relative to MEFs from Par-4+/+ mice. Knockdown of Par-4 in 3T3-L1 pre-adipocyte cultures by RNA-interference induced rapid differentiation to mature adipocytes. Interestingly, basal expression of PPARγ, a master regulator of de novo lipid synthesis and adipogenesis, was induced during adipogenesis in the cell lines, and PPARγ induction and adipogenesis caused by Par-4 loss was reversed by replenishment of Par-4. Mechanistically, Par-4 downregulates PPARγ expression by directly binding to its upstream promoter, as judged by chromatin immunoprecipitation and luciferase-reporter studies. Thus, Par-4 transcriptionally suppresses the PPARγ promoter to regulate adipogenesis. Full article
(This article belongs to the Special Issue The Role of PPARs in Disease - Volume III)
Show Figures

Figure 1

19 pages, 6542 KiB  
Article
Genome Engineering of Primary and Pluripotent Stem Cell-Derived Hepatocytes for Modeling Liver Tumor Formation
by Lulu Zhang, Xunting Wang, Xuelian Yang, Yijia Chi, Yihang Chu, Yi Zhang, Yufan Gong, Fei Wang, Qian Zhao and Dongxin Zhao
Biology 2024, 13(9), 684; https://doi.org/10.3390/biology13090684 - 2 Sep 2024
Viewed by 2559
Abstract
Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic [...] Read more.
Genome editing has demonstrated its utility in generating isogenic cell-based disease models, enabling the precise introduction of genetic alterations into wild-type cells to mimic disease phenotypes and explore underlying mechanisms. However, its application in liver-related diseases has been limited by challenges in genetic modification of mature hepatocytes in a dish. Here, we conducted a systematic comparison of various methods for primary hepatocyte culture and gene delivery to achieve robust genome editing of hepatocytes ex vivo. Our efforts yielded editing efficiencies of up to 80% in primary murine hepatocytes cultured in monolayer and 20% in organoids. To model human hepatic tumorigenesis, we utilized hepatocytes differentiated from human pluripotent stem cells (hPSCs) as an alternative human hepatocyte source. We developed a series of cellular models by introducing various single or combined oncogenic alterations into hPSC-derived hepatocytes. Our findings demonstrated that distinct mutational patterns led to phenotypic variances, affecting both overgrowth and transcriptional profiles. Notably, we discovered that the PI3KCA E542K mutant, whether alone or in combination with exogenous c-MYC, significantly impaired hepatocyte functions and facilitated cancer metabolic reprogramming, highlighting the critical roles of these frequently mutated genes in driving liver neoplasia. In conclusion, our study demonstrates genome-engineered hepatocytes as valuable cellular models of hepatocarcinoma, providing insights into early tumorigenesis mechanisms. Full article
Show Figures

Figure 1

14 pages, 3457 KiB  
Article
Effects of Polyunsaturated Fatty Acid/Saturated Fatty Acid Ratio and Different Amounts of Monounsaturated Fatty Acids on Adipogenesis in 3T3-L1 Cells
by Sim Yee Lim and Yi-Wen Chien
Biomedicines 2024, 12(9), 1980; https://doi.org/10.3390/biomedicines12091980 - 2 Sep 2024
Cited by 1 | Viewed by 1882
Abstract
(1) Background: Adipose tissue serves as a central repository for energy storage and is an endocrine organ capable of secreting various adipokines, including leptin and adiponectin. These adipokines exert profound influences on diverse physiological processes such as insulin sensitivity, appetite regulation, lipid metabolism, [...] Read more.
(1) Background: Adipose tissue serves as a central repository for energy storage and is an endocrine organ capable of secreting various adipokines, including leptin and adiponectin. These adipokines exert profound influences on diverse physiological processes such as insulin sensitivity, appetite regulation, lipid metabolism, energy homeostasis, and body weight. Given the integral role of adipose tissue in metabolic regulation, it is imperative to investigate the effects of varying proportions and types of dietary fats on adipocyte function. In addition, our previous study showed that P/S = 5 and MUFA = 60% appeared to be beneficial in preventing white adipose tissue accumulation by decreasing plasma insulin levels and increasing hepatic lipolytic enzyme activities involved in β-oxidation. Therefore, the objective of this study was to explore the effects of a polyunsaturated fatty acid (PUFA) to saturated fatty acid (SFA) ratio of 5 and varying levels of monounsaturated fatty acids (MUFA = 30% or 60%) on lipogenesis. (2) Methods: We cultured 3T3-L1 mouse embryo fibroblasts in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% bovine calf serum until confluent. Varying ratios of palmitic acid (PA), oleic acid (OA), and linoleic acid (LA) were first bound with bovine serum albumin (BSA) before being applied to 3T3-L1 adipocytes in low doses and in high doses. (3) Results: Low doses of P/S ratio = 5, MUFA = 60% (M60) fatty acids decreased the accumulation of triglycerides in mature adipocytes by decreasing the mRNA expression of adipogenic factors, such as peroxisome proliferator-activated receptors (PPARs), lipoprotein lipase (LPL), and glucose transporter-4 (GLUT-4), while increasing lipolytic enzyme (hormone-sensitive lipase, HSL) expression when compared to high doses of P/S ratio = 5, MUFA = 60% (M60), low and high doses of P/S ratio = 5, MUFA = 30% (M30). Furthermore, the treatment of M60 in low doses also decreased the secretion of leptin and increased the secretion of adiponectin in adipocytes. (4) Conclusions: The composition of P/S = 5, MUFA = 60% fatty acid in low doses appeared to result in anti-adipogenic effects on 3T3-L1 adipocytes due to the down-regulation of adipogenic effects and the transcription factor. Full article
(This article belongs to the Special Issue Lipogenesis and Lipolysis: Insights from Molecular Perspectives)
Show Figures

Figure 1

Back to TopTop