Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = hen’s egg-chorioallantoic membrane test (HET-CAM) assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1467 KiB  
Article
Phytochemical, Antioxidant, Antimicrobial and Safety Profile of Glycyrrhiza glabra L. Extract Obtained from Romania
by Iulia Semenescu, Stefana Avram, Diana Similie, Daliana Minda, Zorita Diaconeasa, Delia Muntean, Antonina Evelina Lazar, Daniela Gurgus and Corina Danciu
Plants 2024, 13(23), 3265; https://doi.org/10.3390/plants13233265 - 21 Nov 2024
Cited by 4 | Viewed by 2966
Abstract
Glycyrrhiza glabra L., also known as licorice, belongs to the Fabaceae family and is one of the most commercially valuable plants worldwide, being used in the pharmaceutical, cosmetic, and food industries, both for its therapeutic benefits as well as for the sweetening properties [...] Read more.
Glycyrrhiza glabra L., also known as licorice, belongs to the Fabaceae family and is one of the most commercially valuable plants worldwide, being used in the pharmaceutical, cosmetic, and food industries, both for its therapeutic benefits as well as for the sweetening properties of the extract. This study evaluates the phytochemical composition, the biological activities, and the safety profile of a methanolic extract of licorice root (LRE) obtained from Romania. Ten phytocompounds were quantified by the HPLC-DAD-ESI+, the most abundant being the triterpene glycyrrhizin (13.927 mg/g dry extract.), followed by these flavonoids: liquiritin, liquiritigenin-apiosyl-glucoside, and apigenin-rutinoside liquiritigenin. The total phenolic content of the LRE was found to be 169.83 mg gallic acid/g dry extract. (GAE/g d.e.), and the extract showed a maximum of 79.29% antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Good antimicrobial activity of the LRE was observed for Gram-negative bacteria, especially for S. pneumoniae and S. pyogenes. The mineral content of the LRE was indicative of the lack of toxicity; heavy metals such as lead, cadmium, arsenic, nickel, and cobalt were below the detection limit. The safety profile of the licorice extract was assessed using the in vivo hen egg test-chorioallantoic membrane (HET-CAM protocol), indicating no irritability, good tolerability, and biocompatibility. The phytochemical and biological characterization of the Romanian licorice root extract reveals a good source of glycyrrhizin and polyphenols with antioxidant and antimicrobial potential, along with a safety profile that may be useful for future therapeutic applications. Full article
Show Figures

Figure 1

15 pages, 1144 KiB  
Article
Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE)
by Pedro Antônio de Souza Rolim, Isabela Araguê Catanoze, Julia Amanda Rodrigues Fracasso, Debora Barros Barbosa, Lucineia dos Santos, Valdecir Farias Ximenes and Aimée Maria Guiotti
Cosmetics 2024, 11(5), 162; https://doi.org/10.3390/cosmetics11050162 - 19 Sep 2024
Cited by 2 | Viewed by 2870
Abstract
The present study aimed to analyze the antifungal, antioxidant, and irritant potential of citronella oil, both isolated and combined with caffeic acid phenethyl ester (CAPE), for topical oral candidiasis. The antioxidant potential was evaluated using two methods, the DPPH test and the reducing [...] Read more.
The present study aimed to analyze the antifungal, antioxidant, and irritant potential of citronella oil, both isolated and combined with caffeic acid phenethyl ester (CAPE), for topical oral candidiasis. The antioxidant potential was evaluated using two methods, the DPPH test and the reducing power test (FRAP), while the irritant potential of the solutions was assessed through the hen’s egg chorioallantoic membrane test (HET-CAM). The DPPH test (IC50) values for the CITRO III + CAPE III combination were 32 ± 9 mg/mL, and for isolated CAPE, 13 ± 3 mg/mL. The results from the FRAP method revealed a low iron-reducing power for the combination of 1.25 mg/mL of citronella and 0.0775 mg/mL of CAPE (CITRO III + CAPE III), showing no significant difference compared to the isolated solution of 0.15 mg/mL of CAPE. The antibacterial activity of CAPE and isolated citronella in vitro against microorganisms was evaluated using two methods: microdilution and biofilm assay. The results showed that the MIC and MFC values were 0.5 mg/mL for citronella at both tested times (24 h and 48 h). For CAPE, the MFC values were 0.031 mg/mL. For the biofilm assay, the isolated compounds and combinations at 1 min and 6 h showed significantly different results from the controls (p < 0.05). Furthermore, the HET-CAM results demonstrated the absence of irritability. Based on these premises, the antifungal and antioxidant actions, and absence of irritability were proven. Moreover, this work presents a natural antifungal of interest to the pharmaceutical industry. Full article
Show Figures

Figure 1

19 pages, 2356 KiB  
Article
Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging
by Paphawarin Thuraphan, Suphawan Suang, Anurak Bunrod, Watchara Kanjanakawinkul and Wantida Chaiyana
Pharmaceuticals 2024, 17(6), 679; https://doi.org/10.3390/ph17060679 - 24 May 2024
Cited by 2 | Viewed by 2090
Abstract
This study aimed to extract bioactive proteins and protein hydrolysates from Apis mellifera larvae and assess their potential application in cosmetics as well as their irritation properties. The larvae were defatted and extracted using various mediums, including DI water, along with 0.5 M [...] Read more.
This study aimed to extract bioactive proteins and protein hydrolysates from Apis mellifera larvae and assess their potential application in cosmetics as well as their irritation properties. The larvae were defatted and extracted using various mediums, including DI water, along with 0.5 M aqueous solutions of sodium hydroxide, ascorbic acid, citric acid, and hydrochloric acid. Subsequently, the crude proteins were hydrolyzed using the Alcalase® enzyme. All extracts underwent testing for antioxidant activities via the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and Griess assays. Anti-aging properties were evaluated in terms of anti-collagenase and anti-hyaluronidase effects. Irritation potential was assessed using the hen’s egg chorioallantoic membrane (HET-CAM) test. The results revealed that the sodium hydroxide extraction showed promising outcomes in terms of yield, protein content, and effectiveness in inhibiting hyaluronidase, with the highest inhibition at 78.1 ± 1.5%, comparable to that of oleanolic acid. Conversely, crude protein extracted with ascorbic acid and its hydrolysate showed notable antioxidant and collagenase-inhibitory activities. Remarkably, their anti-collagenase effects were comparable to those of ascorbic acid and lysine. Additionally, it demonstrated safety upon testing with the CAM. In conclusion, the findings provided valuable insights into the utilization of A. mellifera larval proteins as active ingredients with a wide range of cosmeceutical applications, particularly due to their antioxidant, anti-aging, and low irritation properties, which hold significant promise for anti-skin wrinkles. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

13 pages, 6084 KiB  
Article
Achyrocline satureioides (Lam.) DC (Asteraceae) Extract-Loaded Nanoemulsions as a Promising Topical Wound Healing Delivery System: In Vitro Assessments in Human Keratinocytes (HaCaT) and HET-CAM Irritant Potential
by Lucélia Albarello Balestrin, Tainá Kreutz, Flávia Nathiely Silveira Fachel, Juliana Bidone, Nicolly Espindola Gelsleichter, Letícia Scherer Koester, Valquiria Linck Bassani, Elizandra Braganhol, Cristiana Lima Dora and Helder Ferreira Teixeira
Pharmaceutics 2021, 13(8), 1241; https://doi.org/10.3390/pharmaceutics13081241 - 12 Aug 2021
Cited by 24 | Viewed by 3990
Abstract
Achyrocline satureioides (Lam.) DC Asteraceae extracts (ASEs) have been investigated for the treatment of various skin disorders. This study reports the effects of ASE-loaded nanoemulsions (NEASE) on the cellular viability, death by necrosis, and migration of immortalized human keratinocytes (HaCaT cell [...] Read more.
Achyrocline satureioides (Lam.) DC Asteraceae extracts (ASEs) have been investigated for the treatment of various skin disorders. This study reports the effects of ASE-loaded nanoemulsions (NEASE) on the cellular viability, death by necrosis, and migration of immortalized human keratinocytes (HaCaT cell line), as well as the irritant potential through the hen’s egg chorioallantoic membrane test (HET-CAM). NEASE exhibited a polydispersity index above 0.12, with a droplet size of 300 nm, ζ-potential of −40 mV, and content of flavonoids close to 1 mg/mL. No cytotoxicity of the ASE was observed on HaCaT by MTT assay (up to 10 µg/mL). A significant increase of HaCaT viability was observed to NEASE (up to 5 μg/mL of flavonoids), compared to treatment with the ASE. The necrosis death evaluation demonstrated that only NEASE did not lead to cell death at all the tested concentrations. The scratch assay demonstrated that NEASE was able to increase the cell migration at low flavonoid concentrations. Finally, the HET-CAM test proved the non-irritative potential of NEASE. Overall, the results indicate the potential of the proposed formulations for topical use in wound healing, in view of their promising effects on proliferation and migration in keratinocytes, combined with an indication of the absence of cytotoxicity and non-irritating potential. Full article
(This article belongs to the Special Issue Skin Drug Delivery: Local and Systemic Applications)
Show Figures

Graphical abstract

22 pages, 4393 KiB  
Article
A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula
by Vladimír Petrilla, Magdaléna Polláková, Barbora Bekešová, Zuzana Andrejčáková, Radoslava Vlčková, Dana Marcinčáková, Monika Petrillová, Eva Petrovová, Drahomíra Sopková and Jaroslav Legáth
Toxins 2021, 13(5), 299; https://doi.org/10.3390/toxins13050299 - 22 Apr 2021
Cited by 3 | Viewed by 3822
Abstract
The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related [...] Read more.
The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related species Bitis parviocula using The Hen’s Egg Test—Chorioallantoic membrane test (HET-CAM) and Chicken embryotoxicity screening test (CHEST), acetylcholinesterase (AChE) analysis, cytotoxicity assay performed on cell lines and protein analysis of selected venoms. Our results indicated that B. parviocula venom contains vasoactive compounds that have a direct effect on blood vessels. The AChE analysis showed significant ability inhibiting AChE activity in embryonic tissue. Cytotoxicity observed on A549 ATCC® CCL-185™ cells indicates the possible presence of cytotoxic agents in B. parviocula venom. We proved previously described differences in the composition of venom obtained from B. arietans and B. parviocula by using electrophoresis and total protein concentration. Based on similarities in vasoactive effects observed after administration of venoms onto a chicken chorioallantoic membrane, we suggest that venom from B. arietans and B. parviocula might share certain venom proteins responsible for haemotoxicity. The main active components of B. parviocula venom are unknown. Our results suggest that it might be worth performing proteomic analysis of B. parviocula venom as it might contain medically valuable compounds. Full article
(This article belongs to the Special Issue Venom-Induced Tissue Damage)
Show Figures

Figure 1

14 pages, 2676 KiB  
Article
Comparative Toxicological In Vitro and In Ovo Screening of Different Orthodontic Implants Currently Used in Dentistry
by Camelia A. Szuhanek, Claudia G. Watz, Ștefana Avram, Elena-Alina Moacă, Ciprian V. Mihali, Adelina Popa, Andrada A. Campan, Mirela Nicolov and Cristina A. Dehelean
Materials 2020, 13(24), 5690; https://doi.org/10.3390/ma13245690 - 13 Dec 2020
Cited by 14 | Viewed by 2858
Abstract
Selecting the most biocompatible orthodontic implant available on the market may be a major challenge, given the wide array of orthodontic devices currently available on the market. The latest scientific data have suggested that in vitro evaluations using oral cell lines provide reliable [...] Read more.
Selecting the most biocompatible orthodontic implant available on the market may be a major challenge, given the wide array of orthodontic devices currently available on the market. The latest scientific data have suggested that in vitro evaluations using oral cell lines provide reliable data regarding the toxicity of residual particles released by different types of orthodontic devices. In this regard, the in vitro biocompatibility of three different commercially available implants (stainless steel and titanium-based implants) was assessed. Methods: As an in vitro model, human gingival fibroblasts (HGFs) were employed to evaluate the cellular morphology, cell viability, and cytotoxicity by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays at 24 h and 72 h post-exposure to test implants. Results: The results correlate the composition and topography of the implant surface with biological experimental evaluations related to directly affected cells (gingival fibroblasts) and toxicological results on blood vessels (hen’s egg test-chorioallantoic membrane (HET-CAM) assay). The stainless steel implant exhibits a relative cytotoxicity against HGF cells, while the other two samples induced no significant alterations of HGF cells. Conclusion: Among the three test orthodontic implants, the stainless steel implant induced slight cytotoxic effects, thus increased vigilance is required in their clinical use, especially in patients with high sensitivity to nickel. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

20 pages, 3608 KiB  
Article
Imprinted Contact Lenses for Ocular Administration of Antiviral Drugs
by Angela Varela-Garcia, José Luis Gomez-Amoza, Angel Concheiro and Carmen Alvarez-Lorenzo
Polymers 2020, 12(9), 2026; https://doi.org/10.3390/polym12092026 - 4 Sep 2020
Cited by 37 | Viewed by 5296
Abstract
A variety of ocular diseases are caused by viruses, and most treatments rely on the use of systemic formulations and eye drops. The efficient ocular barriers that oppose antiviral drug penetration have prompted the development of improved topical delivery platforms. The aim was [...] Read more.
A variety of ocular diseases are caused by viruses, and most treatments rely on the use of systemic formulations and eye drops. The efficient ocular barriers that oppose antiviral drug penetration have prompted the development of improved topical delivery platforms. The aim was to design hydrogel contact lenses endowed with an affinity for acyclovir (ACV) and its prodrug valacyclovir (VACV), first-choice drugs against herpes simplex virus (HSV) ocular keratitis, and that can sustain the release of therapeutic doses during daily wearing. Functional monomers suitable for interaction with these drugs were screened using computational modeling. Imprinted and non-imprinted hydrogels were prepared with various contents in the functional monomer methacrylic acid (MAA) and characterized in terms of swelling, transmittance, mechanical properties, and ocular compatibility (hen’s egg test on chorioallantoic membrane (HET-CAM) assay). The values were in the range typical of soft contact lenses. Compared to ACV, the capability to load VACV was remarkably higher due to stronger electrostatic interactions with MAA. The advantages of the imprinting technology were evidenced for VACV. Stability of VACV loading solution/hydrogels under steam heat sterilization and subsequent drug release was investigated. Permeability studies through bovine and porcine cornea and sclera of the drug released from the hydrogels revealed that VACV accumulates in the cornea and can easily cross the sclera, which may facilitate the treatment of both anterior and posterior eye segments diseases. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Spain (2020,2021))
Show Figures

Graphical abstract

18 pages, 4484 KiB  
Article
Micelles of Progesterone for Topical Eye Administration: Interspecies and Intertissues Differences in Ex Vivo Ocular Permeability
by Adrián M. Alambiaga-Caravaca, María Aracely Calatayud-Pascual, Vicent Rodilla, Angel Concheiro, Alicia López-Castellano and Carmen Alvarez-Lorenzo
Pharmaceutics 2020, 12(8), 702; https://doi.org/10.3390/pharmaceutics12080702 - 26 Jul 2020
Cited by 30 | Viewed by 4013
Abstract
Progesterone (PG) may provide protection to the retina during retinitis pigmentosa, but its topical ocular supply is hampered by PG poor aqueous solubility and low ocular bioavailability. The development of efficient topical ocular forms must face up to two relevant challenges: Protective barriers [...] Read more.
Progesterone (PG) may provide protection to the retina during retinitis pigmentosa, but its topical ocular supply is hampered by PG poor aqueous solubility and low ocular bioavailability. The development of efficient topical ocular forms must face up to two relevant challenges: Protective barriers of the eyes and lack of validated ex vivo tests to predict drug permeability. The aims of this study were: (i) To design micelles using Pluronic F68 and Soluplus copolymers to overcome PG solubility and permeability; and (ii) to compare drug diffusion through the cornea and sclera of three animal species (rabbit, porcine, and bovine) to investigate interspecies differences. Micelles of Pluronic F68 (3–4 nm) and Soluplus (52–59 nm) increased PG solubility by one and two orders of magnitude, respectively and exhibited nearly a 100% encapsulation efficiency. Soluplus systems showed in situ gelling capability in contrast to the low viscosity Pluronic F68 micelles. The formulations successfully passed the hen’s egg-chorioallantoic membrane test (HET-CAM) test. PG penetration through rabbit cornea and sclera was faster than through porcine or bovine cornea, although the differences were also formulation-dependent. Porcine tissues showed intermediate permeability between rabbit and bovine. Soluplus micelles allowed greater PG accumulation in cornea and sclera whereas Pluronic F68 promoted a faster penetration of lower PG doses. Full article
Show Figures

Graphical abstract

19 pages, 2316 KiB  
Article
Enhanced Transdermal Delivery of Concentrated Capsaicin from Chili Extract-Loaded Lipid Nanoparticles with Reduced Skin Irritation
by Phunsuk Anantaworasakul, Wantida Chaiyana, Bozena B. Michniak-Kohn, Wandee Rungseevijitprapa and Chadarat Ampasavate
Pharmaceutics 2020, 12(5), 463; https://doi.org/10.3390/pharmaceutics12050463 - 19 May 2020
Cited by 54 | Viewed by 6420
Abstract
The aim of this study was to develop lipid-based nanoparticles that entrapped a high concentration of capsaicin (0.25%) from a capsicum oleoresin extract. The solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were strategically fabricated to entrap capsaicin without a hazardous solvent. [...] Read more.
The aim of this study was to develop lipid-based nanoparticles that entrapped a high concentration of capsaicin (0.25%) from a capsicum oleoresin extract. The solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were strategically fabricated to entrap capsaicin without a hazardous solvent. Optimized nanosize lipid particles with high capsaicin entrapment and loading capacity were achieved from pair-wise comparison of the solid lipid mixtures consisting of fatty esters and fatty alcohols, representing small and large crystal-structure molecules combined with a compatible liquid lipid and surfactants (crystallinity index = 3%). This report was focused on selectively captured capsaicin from oleoresin in amorphous chili extract-loaded NLCs with 85.27% ± 0.12% entrapment efficiency (EE) and 8.53% ± 0.01% loading capacity (LC). The particle size, polydispersity index, and zeta potential of chili extract-loaded NLCs were 148.50 ± 2.94 nm, 0.12 ± 0.03, and −29.58 ± 1.37 mV, respectively. The favorable zero-order kinetics that prolonged capsaicin release and the significantly faster transdermal penetration of the NLC attributed to the reduction in skin irritation of the concentrated capsaicin NLCs, as illustrated by the in vitro EpiDermTM three-dimensional human skin irritation test and hen’s egg test chorioallantoic membrane assay (HET-CAM). Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

13 pages, 1919 KiB  
Article
Synthesis, Characterization, Self-Assembly, and Irritation Studies of Polyglyceryl-10 Caprylates
by Guangyan Zhang, Chenhui Bao, Kaiqiao Fu, Yaolin Lin, Tianlong Li and Huping Yang
Polymers 2020, 12(2), 294; https://doi.org/10.3390/polym12020294 - 2 Feb 2020
Cited by 5 | Viewed by 6640
Abstract
1,4-dioxane should be less than or equal to 10 ppm in finished cosmetic products according to the recommendation of the Scientific Committee on Consumer Safety, but it is often generated as a by-product during the manufacturing process of poly(ethylene glycol) (PEG)-based derivatives. In [...] Read more.
1,4-dioxane should be less than or equal to 10 ppm in finished cosmetic products according to the recommendation of the Scientific Committee on Consumer Safety, but it is often generated as a by-product during the manufacturing process of poly(ethylene glycol) (PEG)-based derivatives. In order to avoid the possible risk caused by 1,4-dioxane, it might be a good choice for preparing cosmetic ingredients by using polyglycerin (PG) instead of PEG as a hydrophilic segment. In the present study, polyglyceryl-10 caprylates were synthesized by the esterification reaction between polyglycerin-10 and caprylic acid. FTIR and 1H NMR were utilized to confirm the chemical structures of the obtained polyglyceryl-10 caprylates. Light transmittance was availed to investigate the water solubility of polyglyceryl-10 caprylates. The self-assembly behavior, size, and size distribution of polyglyceryl-10 caprylates were investigated by dynamic light scattering. The makeup cleansing effect was also evaluated by in vitro and in vivo methods. Irritation was evaluated by hen’s egg test-chorioallantoic membrane assay (HET-CAM). Results showed that polyglyceryl-10 monocaprylate could self-assemble into nanoparticles in the water at the concentration range of 2.5–10 wt% with a transparent appearance. The diameter of formed nanoparticles was around 100 nm with a narrow particle size distribution around 0.1 at the concentration of 2.5 wt% or 5 wt%. Polyglyceryl-10 monocaprylate exhibited good removal effect against makeup and excellent removal efficacy against pen eyeliner. The irritation of polyglyceryl-10 monocaprylate evaluated by HET-CAM at the concentration of 4 wt% was moderate irritant (irritation score = 8.4), which was lower than that of PEG-6 caprylic/capric glycerides (severe irritant, irritation score = 14.1). Therefore, polyglyceryl-10 monocaprylate might be a promising cosmetic ingredient for transparent makeup removing water. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

18 pages, 2629 KiB  
Article
Cyclodextrin–Amphiphilic Copolymer Supramolecular Assemblies for the Ocular Delivery of Natamycin
by Blanca Lorenzo-Veiga, Hakon Hrafn Sigurdsson, Thorsteinn Loftsson and Carmen Alvarez-Lorenzo
Nanomaterials 2019, 9(5), 745; https://doi.org/10.3390/nano9050745 - 15 May 2019
Cited by 42 | Viewed by 5766
Abstract
Natamycin is the only drug approved for fungal keratitis treatment, but its low water solubility and low ocular penetration limit its efficacy. The purpose of this study was to overcome these limitations by encapsulating the drug in single or mixed micelles and poly(pseudo)rotaxanes. [...] Read more.
Natamycin is the only drug approved for fungal keratitis treatment, but its low water solubility and low ocular penetration limit its efficacy. The purpose of this study was to overcome these limitations by encapsulating the drug in single or mixed micelles and poly(pseudo)rotaxanes. Soluplus and Pluronic P103 dispersions were prepared in 0.9% NaCl and pH 6.4 buffer, with or without α-cyclodextrin (αCD; 10% w/v), and characterized through particle size, zeta potential, solubilization efficiency, rheological properties, ocular tolerance, in vitro drug diffusion, and ex vivo permeation studies. Soluplus micelles (90–103 nm) and mixed micelles (150–110 nm) were larger than Pluronic P103 ones (16–20 nm), but all showed zeta potentials close to zero. Soluplus, Pluronic P103, and their mixed micelles increased natamycin solubility up to 6.00-fold, 3.27-fold, and 2.77-fold, respectively. Soluplus dispersions and poly(pseudo)rotaxanes exhibited in situ gelling capability, and they transformed into weak gels above 30 °C. All the formulations were non-irritant according to Hen’s Egg Test on the Chorioallantoic Membrane (HET-CAM) assay. Poly(pseudo)rotaxanes facilitated drug accumulation into the cornea and sclera, but led to lower natamycin permeability through the sclera than the corresponding micelles. Poly(pseudo)rotaxanes made from mixed micelles showed intermediate natamycin diffusion coefficients and permeability values between those of Pluronic P103-based and Soluplus-based poly(pseudo)rotaxanes. Therefore, the preparation of mixed micelles may be a useful tool to regulate drug release and enhance ocular permeability. Full article
(This article belongs to the Special Issue Polymeric Micelles and Their Application in Nanomedicine)
Show Figures

Graphical abstract

15 pages, 1436 KiB  
Article
Insulin Mimetic Properties of Extracts Prepared from Bellis perennis
by Renate Haselgrübler, Verena Stadlbauer, Flora Stübl, Bettina Schwarzinger, Ieva Rudzionyte, Markus Himmelsbach, Marcus Iken and Julian Weghuber
Molecules 2018, 23(10), 2605; https://doi.org/10.3390/molecules23102605 - 11 Oct 2018
Cited by 29 | Viewed by 6953
Abstract
Diabetes mellitus (DM) and consequential cardiovascular diseases lead to millions of deaths worldwide each year; 90% of all people suffering from DM are classified as Type 2 DM (T2DM) patients. T2DM is linked to insulin resistance and a loss of insulin sensitivity. It [...] Read more.
Diabetes mellitus (DM) and consequential cardiovascular diseases lead to millions of deaths worldwide each year; 90% of all people suffering from DM are classified as Type 2 DM (T2DM) patients. T2DM is linked to insulin resistance and a loss of insulin sensitivity. It leads to a reduced uptake of glucose mediated by glucose transporter 4 (GLUT4) in muscle and adipose tissue, and finally hyperglycemia. Using a fluorescence microscopy-based screening assay we searched for herbal extracts that induce GLUT4 translocation in the absence of insulin, and confirmed their activity in chick embryos. We found that extracts prepared from Bellis perennis (common daisy) are efficient inducers of GLUT4 translocation in the applied in vitro cell system. In addition, these extracts also led to reduced blood glucose levels in chicken embryos (in ovo), confirming their activity in a living organism. Using high-performance liquid chromtaography (HPLC) analysis, we identified and quantified numerous polyphenolic compounds including apigenin glycosides, quercitrin and chlorogenic acid, which potentially contribute to the induction of GLUT4 translocation. In conclusion, Bellis perennis extracts reduce blood glucose levels and are therefore suitable candidates for application in food supplements for the prevention and accompanying therapy of T2DM. Full article
(This article belongs to the Special Issue Bioactive Compounds for Metabolic Syndrome and Type 2 Diabetes-II)
Show Figures

Figure 1

Back to TopTop