A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula
Abstract
:1. Introduction
2. Results
2.1. Chicken Embryo Based Experimental Assays
2.1.1. HET-CAM
2.1.2. CHEST
2.1.3. Acetylcholinesterase Analysis
2.2. Cytotoxicity Assays
2.3. Snake Venom Protein Profile
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Snake Venom Processing
5.2. Chicken Embryo Based Experimental Assays
5.2.1. HET-CAM Test (The Hen´s Egg Test and Chorioallantoic Membrane)
5.2.2. Chicken Embryotoxicity Screening Test (CHEST)
5.2.3. Acetylcholinesterase Analysis
5.3. Cytotoxicity
5.3.1. Cell Cultivation
5.3.2. Monitoring of Cell Proliferation in Real-Time
5.3.3. Metabolic Activity
5.4. Snake Venom Protein Profile
5.4.1. Protein Electrophoresis
5.4.2. Spectroscopic Determination of Venom Proteins
5.5. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Böhme, W. A Review of Our Knowledge of the Rare Ethiopian Mountain Viper, Bitis parviocula Böhme, 1977. In Proceedings of the 3rd Biology of the Vipers Conference, Pisa, Italy, 31 March–2 April 2010; p. 47. [Google Scholar]
- Mallow, D.; Ludwig, D.; Nilson, G. True Vipers: Natural History and Toxinology of Old World Vipers; Krieger Publishing Company: Malabar, FL, USA, 2003; p. 359. ISBN 0-89464-877-2. [Google Scholar]
- Spawls, S.; Branch, B. The Dangerous Snakes of Africa; Ralph Curtis Books; Oriental Press: Dubai, United Arab Emirates, 1995; p. 192. ISBN 0-88359-029-8. [Google Scholar]
- Gower, D.J.; Wade, E.O.Z.; Spawls, S.; Böhme, W.; Buechley, E.R.; Sykes, D.; Colston, T.J. A new large species of Bitis Gray, 1842 (Serpentes: Viperidae) from the Bale Mountains of Ethiopia. Zootaxa 2016, 4093, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.E.; Hotle, D.; Rodríguez-Acosta, A. Neutralization of Bitis parviocula (Ethiopian mountain adder) venom by the South African Institute of Medical Research (SAIMR) antivenom. Rev. Inst. Med. Trop. Sao Paulo 2011, 53, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, R.B.; Dvorcakova, S.; Luptakova, L.; Vdoviakova, K.; Petrilla, V.; Petrovova, E. Evaluation of vasoactivity after haemotoxic snake venom administration. Toxicon 2019, 158, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Polláková, M.; Petrilla, V.; Andrejčáková, Z.; Petrillová, M.; Sopková, D.; Petrovová, E. Spitting cobras: Experimental assay employing the model of chicken embryo and the chick chorioallantoic membrane for imaging and evaluation of effects of venom from African and Asian species (Naja ashei, Naja nigricollis, Naja siamensis, Naja sumatrana). Toxicon 2021, 189, 79–90. [Google Scholar] [CrossRef]
- Gopalakrishnakone, P.; Inagaki, H.; Mukherjee, A.K.; Rahmy, T.R.; Vogel, C.W. (Eds.) Snake Venoms; Springer: Berlin, Germany, 2017. [Google Scholar]
- The Universal Protein Resource (UniProt), A Comprehensive Resource for Protein Sequence and Annotation Data. Available online: https://www.uniprot.org/ (accessed on 12 February 2021).
- VenomZone. Available online: https://venomzone.expasy.org/3856#tab6 (accessed on 12 February 2021).
- Bellairs, R.; Osmond, M. The Atlas of Chick Development, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 0-12-084791-4. [Google Scholar]
- Davies, W.J.; Freeman, S.J. Chick Embryotoxicity Screening Test (CHEST I and II). In In Vitro Toxicity Testing Protocols; O’Hare, S., Atterwill, C.K., Eds.; Humana Press: Totowa, NJ, USA, 1995; pp. 307–310. ISBN 978-1-59259-530-3. [Google Scholar] [CrossRef]
- Jamshhidzade, A.; Nicknahad, H.; Mohammadi-Bardbori, A.; Talati, M. Comparative measurement of serum Acetyl Cholinesterase Enzyme using three different methods. Iran. J. Toxicol. 2009, 2, 268–272. [Google Scholar] [CrossRef]
- Koelle, G.B. Pharmacology of organophosphates. J. Appl. Toxicol. 1994, 14, 105–109. [Google Scholar] [CrossRef]
- Burtis, C.A.; Ashwood, A. Tietz Fundamentals of Clinical Chemistry, 5th ed.; Saunders: Philadelphia, PA, USA, 2001; pp. 385–388. [Google Scholar]
- Queen, M.J.M.C. Clinical and analytical considerations in the utilization of cholinesterase measurements. Clin. Chim. Acta 1995, 237, 91–105. [Google Scholar]
- Ducatman, A.M.; Moyer, T.P. The Role in the Clinical Laboratory in the Evaluation of Polygenated Polycyclic Toxins: DDT, PCB, Diabenzodioxins and Diabenzofurans, Chlordecone (Kepone), and Hexachlorophene. In Therapeutic Drug Monitoring Continuing Education and Quality Control Program; American Association for Clinical Chemistry: Washington, DC, USA, 1983. [Google Scholar]
- Bajgar, J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis prophylaxis and treatment. Adv. Clin. Chem. 2004, 38, 151–216. [Google Scholar]
- Layish, I.; Krivoy, A.; Rotman, E.; Finkelstin, A.; Tashmaz, Z.; Yehezkelli, Y. Pharmacollogic prophylaxis against never agent poisoning. Isr. Med. Assoc. J. 2005, 7, 182–187. [Google Scholar]
- Lauder, J.M.; Schambra, U.B. Morphogenetic roles of acetylcholine. Environ. Health Perspect. 1999, 107, 65–69. [Google Scholar]
- Petrovova, E.; Luptakova, L.; Mazensky, D.; Danko, J.; Sedmera, D. Morphogenetic Activities of Bendiocarb as Cholinesterase Inhibitor on Development of the Chick Embryo. In Pesticides in the Modern World; Stoytcheva, M., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 469–494. [Google Scholar] [CrossRef] [Green Version]
- Alhifi, M.A. Effect of pesticides mixture of dimethoate and methidathion on acetylcholinestrase during embryo development using chick embryo model. Egypt. Acad. J. Biol. Sci. 2011, 3, 19–26. [Google Scholar] [CrossRef]
- Ismail, A.A.A. Embryotoxicity and teratogenic potential of cypermethrin and diazinon insecticides on japanese quail chick-embryos (Coturnix japonica). J. Plant Prot. Pathol. 2012, 3, 1269–1286. [Google Scholar] [CrossRef]
- Kalafatakis, K.; Gkanti, V.; Mackenzie-Gray Scott, C.A.; Zarros, A.; Baillie, G.S.; Tsakiris, S. Acetylcholinesterase activity as a neurotoxicity marker within the context of experimentally-simulated hyperprolinaemia: An in vitro approach. J. Nat. Sci. Biol. Med. 2015, 6, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Damazio, L.S.; Silveira, F.R.; Canever, L.; de Castro, A.A.; Estrela, J.M.; Budni, J.; Zugno, A.I. The preventive effects of ascorbic acid supplementation on locomotor and acetylcholinesterase activity in an animal model of schizophrenia induced by ketamine. An. Acad. Bras. Ciênc. 2017, 89, 1133–1141. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, N.; Schmatz, R.; Pereira, L.B.; Ahmad, M.; Stefanello, N.; Vieira, J.M.; Abdalla, F.; Rodrigues, M.V.; Baldissarelli, J.; Pelinson, L.P.; et al. Rosmarinic acid prevents lipid peroxidation and increase in acetylcholinesterase activity in brain of streptozotocin-induced diabetic rats. Cell Biochem. Funct. 2014, 32, 287–293. [Google Scholar] [CrossRef]
- Moga, M.A.; Dimienescu, O.G.; Arvătescu, C.A.; Ifteni, P.; Pleş, L. Anticancer activity of toxins from bee and snake venom—An overview on ovarian cancer. Molecules 2018, 23, 692. [Google Scholar] [CrossRef] [Green Version]
- Rakers, S.; Imse, F.; Gebert, M. Real-time cell analysis: Sensitivity of different vertebrate cell cultures to copper sulfate measured by xCELLigence®. Ecotoxicology 2014, 23, 1582–1591. [Google Scholar] [CrossRef]
- Aird, S.D. Ophidian envenomation strategies and the role of purines. Toxicon 2002, 40, 335–393. [Google Scholar] [CrossRef]
- Calderon, L.A.; Sobrinho, J.C.; Zaqueo, K.D.; de Moura, A.A.; Grabner, A.N.; Mazzi, M.V.; Marcussi, S.; Nomizo, A.; Fernandes, C.F.C.; Zuliani, J.P.; et al. Antitumoral activity of snake venom proteins: New trends in cancer therapy. BioMed Res. Int. 2014, 2014, 203639. [Google Scholar] [CrossRef] [Green Version]
- Al-Asmari, A.K.; Riyasdeen, A.; Al-Shahrani, M.H.; Islam, M. Snake venom causes apoptosis by increasing the reactive oxygen species in colorectal and breast cancer cell lines. OncoTargets Ther. 2016, 9, 6485. [Google Scholar] [CrossRef] [Green Version]
- Antolikova, N.R.; Kello, M.; Zigova, M.; Tischlerova, V.; Petrilla, V.; Pirnik, Z.; Mojzis, J. Naja ashei venom induces mitochondria-mediated apoptosis in human colorectal cancer cells. Acta Biochim. Pol. 2019, 66, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Göcmen, B.; Arikan, H.; Marmer, A.; Langerwerf, B.; Bahar, H. Morphological, hemipenial and venom electrophoresis comparisons of the levantine viper, Macrovipera lebetina (Linnaeus, 1758), from Cyprus and Southern Anatolia. Turk. J. Zool. 2006, 30, 225–234. [Google Scholar]
- Peters, C.; Petrilla, V.; Luptakova, L.; Petrovova, E. The Effects of Snake Venom (Bitis arietans) on Embryonic Development. Med. Toxicol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Petrovová, E.; Sedmera, D.; Míšek, I.; Lešník, F.; Luptáková, L. Bendiocarbamate toxicity in the chick embryo. Folia Biol. 2009, 55, 61–65. [Google Scholar]
- Marcinčáková, D.; Schusterová, P.; Mudroňová, D.; Csank, T.; Falis, M.; Fedorová, M.; Marcinčák, S.; Hus, K.K.; Legáth, J. Impact of zinc sulfate exposition on viability, proliferation and cell cycle distribution of epithelial kidney cells. Pol. J. Environ. Stud. 2019, 28, 3279–3286. [Google Scholar] [CrossRef]
- Miłek, M.; Marcinčáková, D.; Csank, T.; Kšonžeková, P.; Falis, M.; Legáth, J.; Pistl, J. Real-time monitoring of cadmium toxicity in rabbit kidney cells. Acta Vet. Brno 2015, 84, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Sowa, P.; Marcinčáková, D.; Miłek, M.; Sidor, E.; Legáth, J.; Dżugan, M. Analysis of Cytotoxicity of Selected Asteraceae Plant Extracts in Real Time, Their Antioxidant Properties and Polyphenolic Profile. Molecules 2020, 25, 5517. [Google Scholar] [CrossRef]
- Andrejčáková, Z.; Petrilla, V.; Tomečková, V.; Tóth, Š.; Pekárová, T.; Komanický, V.; Šutorová, M.; Petrillová, M.; Sopková, D.; Krešáková, L.; et al. New Approaches in Monitoring Venom of Genus Dendroaspis. Spectrosc. Lett. 2015, 48, 462–472. [Google Scholar] [CrossRef]
Venom | Conc. | Hyperaemia | Haemorrhage | Clotting | Total Average | Irritation Potential |
---|---|---|---|---|---|---|
Control | 0 | 0 | 0 | 0 | 0 | 0 |
B. arietans | E-1 | 0 | 7 | 9 | 16 | Strong |
E-2 | 0 | 6 | 5.5 | 11.5 | Strong | |
E-3 | 0 | 6 | 0 | 6 | Moderate | |
B. parviocula | E-1 | 0 | 6 | 7 | 13 | Strong |
E-2 | 0 | 5 | 1.25 | 6.25 | Moderate | |
E-3 | 0 | 4.5 | 0 | 4.5 | Slight |
Snake Venom | Conc. | N | Live Embryos | Dead Embryos | Mortality(%) |
---|---|---|---|---|---|
Control | 0 | 10 | 10 | 0 | 0 |
B. arietans | E-2 | 9 | 6 | 3 | 33.33 |
E-3 | 8 | 7 | 1 | 12.5 | |
E-4 | 9 | 9 | 0 | 0 | |
E-5 | 10 | 10 | 0 | 0 | |
B. parviocula | E-2 | 10 | 9 | 1 | 10 |
E-3 | 10 | 10 | 0 | 0 | |
E-4 | 10 | 10 | 0 | 0 | |
E-5 | 10 | 10 | 0 | 0 | |
Total | 86 | 81 | 5 |
Venom Dilution | Control Group | B. arietans | B. parviocula | |
---|---|---|---|---|
Body weight | 0 | 0.9185 ± 0.0341 | ||
E-2 | 0.7225 ± 0.0236 ** | 0.8529 ± 0.053 | ||
E-3 | 0.8769 ± 0.0422 | 0.8541 ± 0.0382 | ||
E-4 | 0.8443 ± 0.0523 | 0.8561 ± 0.0273 | ||
E-5 | 0.8119 ± 0.032 * | 0.9597 ± 0.0211 | ||
Heart | 0 | 0.0077 ± 0.0008 | ||
E-2 | 0.0062 ± 0.0011 | 0.0071 ± 0.0008 | ||
E-3 | 0.0073 ± 0.0003 | 0.0055 ± 0.0005 * | ||
E-4 | 0.0067 ± 0.001 | 0.0073 ± 0.0005 | ||
E-5 | 0.0064 ± 0.0004 | 0.0082 ± 0.0007 | ||
Liver | 0 | 0.009 ± 0.0008 | ||
E-2 | 0.0085 ± 0.0016 | 0.009 ± 0.0012 | ||
E-3 | 0.0117 ± 0.0017 | 0.0081 ± 0.0009 | ||
E-4 | 0.0099 ± 0.001 | 0.0097 ± 0.0011 | ||
E-5 | 0.0076 ± 0.0005 | 0.011 ± 0.0009 |
PA (%) | ±SD | MA (%) | ±SD | ||
---|---|---|---|---|---|
B. arietans | E-5 | 124.20 | ±3.3 *** | 122.05 | ±6.3 *** |
E-4 | 0.77 | ±0.01 *** | 73.89 | ±1.72 *** | |
E-3 | 1.16 | ±0.01 *** | 28.17 | ±0.63 *** | |
E-2 | 0.75 | ±0.01 *** | 24.42 | ±0.22 *** | |
B. parviocula | E-5 | 112.63 | ±2.1 *** | 94.15 | ±5.83 *** |
E-4 | 3.18 | ±0.05 *** | 53.60 | ±3.35 *** | |
E-3 | 0.71 | ±0.02 *** | 31.65 | ±0.4 *** | |
E-2 | 1.6 | ±0.07 *** | 23.7 | ±0.16 *** |
B. arietans | B. parviocula | ||||
---|---|---|---|---|---|
Name of Fraction | % | g/L | % | g/L | |
Albumin-Like Fractions | A1 | 2.8 | 0.3 | 3.8 | 0.6 |
A2 | 2.1 | 0.2 | no | no | |
Globulin-Like Fractions | 1 | 2 | 0.2 | 5.6 | 0.8 |
2 | 9.2 | 1.1 | 11.8 | 1.7 | |
3 | 11 | 1.2 | 5.6 | 0.8 | |
4 | 34.5 | 3.9 | 17 | 2.5 | |
5 | 17.2 | 1.9 | 13.6 | 2 | |
6 | 15.6 | 1.7 | 42.6 | 6.2 | |
7 | 5.6 | 0.7 | no | no | |
Total Proteins | 100 | 11.2 | 100 | 14.5 |
Concentration µg/µL | ||||||
---|---|---|---|---|---|---|
Snake Venom | Origin | E-1 | E-2 | E-3 | E-4 | E-5 |
B. arietans | South Africa | 106 | 10.6 | 1.06 | 0.106 | 0.0106 |
B. parviocula | Ethiopia | 106 | 10.6 | 1.06 | 0.106 | 0.0106 |
Score | |||
---|---|---|---|
Time Taken for Manifestation of Irritation Effect | Hyperaemia | Haemorrhage | Clotting |
<0.5 min | 5 | 7 | 9 |
0.5–2 min | 3 | 5 | 7 |
2–5 min | 1 | 3 | 5 |
Cumulative Score | Irritation Potential |
---|---|
<1.0 | Negligible |
1.0–4.9 | Slight |
5.0–8.9 | Moderate |
9.0–21.0 | Strong |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrilla, V.; Polláková, M.; Bekešová, B.; Andrejčáková, Z.; Vlčková, R.; Marcinčáková, D.; Petrillová, M.; Petrovová, E.; Sopková, D.; Legáth, J. A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula. Toxins 2021, 13, 299. https://doi.org/10.3390/toxins13050299
Petrilla V, Polláková M, Bekešová B, Andrejčáková Z, Vlčková R, Marcinčáková D, Petrillová M, Petrovová E, Sopková D, Legáth J. A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula. Toxins. 2021; 13(5):299. https://doi.org/10.3390/toxins13050299
Chicago/Turabian StylePetrilla, Vladimír, Magdaléna Polláková, Barbora Bekešová, Zuzana Andrejčáková, Radoslava Vlčková, Dana Marcinčáková, Monika Petrillová, Eva Petrovová, Drahomíra Sopková, and Jaroslav Legáth. 2021. "A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula" Toxins 13, no. 5: 299. https://doi.org/10.3390/toxins13050299
APA StylePetrilla, V., Polláková, M., Bekešová, B., Andrejčáková, Z., Vlčková, R., Marcinčáková, D., Petrillová, M., Petrovová, E., Sopková, D., & Legáth, J. (2021). A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula. Toxins, 13(5), 299. https://doi.org/10.3390/toxins13050299