Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = hemp bioethanol production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4067 KiB  
Article
The Estimation of the Possibility of Bioethanol Production from Hemp Cellulose Using the HWE Method
by Kamil Roman
Energies 2025, 18(6), 1441; https://doi.org/10.3390/en18061441 - 14 Mar 2025
Cited by 1 | Viewed by 673
Abstract
This study investigates the effect of hot water extraction (HWE). The research investigates how different biomass fractions (0–4 mm, 4–8 mm, and 8–16 mm) respond to hydrothermal treatment, with cellulose content analyzed using the Kürschner–Hoffer method. Results indicate that cellulose loss varies across [...] Read more.
This study investigates the effect of hot water extraction (HWE). The research investigates how different biomass fractions (0–4 mm, 4–8 mm, and 8–16 mm) respond to hydrothermal treatment, with cellulose content analyzed using the Kürschner–Hoffer method. Results indicate that cellulose loss varies across fractions, with the highest degradation observed in the 8–16 mm fraction and the lowest in stalks thinner than 4 mm. The HWE process removes both hemicellulose and lignin selectively, which helps improve enzyme accessibility and maximize bioethanol yields. The absence of fermentation inhibitors suggests that HWE is an effective alternative to acid-based pretreatment. Based on these findings, optimizing process parameters for sustainable bioethanol production from hemp biomass may be possible. Optimal HWE conditions and alternate pretreatment methods should be evaluated in future research to maximize efficiency and industrial feasibility. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

26 pages, 2182 KiB  
Review
Intensification of Bioethanol Production from Different Lignocellulosic Biomasses, Induced by Various Pretreatment Methods: An Updated Review
by Maria El Hage, Hiba N. Rajha, Zoulikha Maache-Rezzoug, Mohamed Koubaa and Nicolas Louka
Energies 2022, 15(19), 6912; https://doi.org/10.3390/en15196912 - 21 Sep 2022
Cited by 9 | Viewed by 3110
Abstract
While world energy demand has certainly decreased with the beginning of the COVID-19 pandemic in 2020, the need has been significantly on the rise since 2021, all as the world’s fossil fuel resources are depleting; it is widely accepted that these resources emit [...] Read more.
While world energy demand has certainly decreased with the beginning of the COVID-19 pandemic in 2020, the need has been significantly on the rise since 2021, all as the world’s fossil fuel resources are depleting; it is widely accepted that these resources emit greenhouse gases (GHG), which are the leading cause for the climate crisis. The main contributors to global warming are manufacturing, energy, and agriculture. The agricultural sector is composed of diversified and potential mobilizable sources of waste which can become an attractive alternative to fossil fuels for energy production, and thus sequester and use carbon. Therefore, a paradigm shift towards more sustainable energy alternatives, efficient waste management, and new technologies is necessary. One good solution is the energetic valorization of lignocellulosic biomass (LCB) which can also originate from agricultural wastes. The biomass consists of cellulose, hemicellulose, and lignin, which are sources of fermentable sugars that can be used for bioethanol production. However, the recovery of sugars requires the pretreatment of LCB before enzymatic hydrolysis, due to its inaccessible molecular structure. Different pretreatment technologies, including acid and alkaline pretreatments for selected biomasses (such as hemp, rice straw, corn straw, sugarcane bagasse, and wheat straw) are discussed and compared. Therefore, this review highlights the potential of agricultural waste as a renewable resource for energy production. Full article
Show Figures

Figure 1

16 pages, 2944 KiB  
Article
Polish Varieties of Industrial Hemp and Their Utilisation in the Efficient Production of Lignocellulosic Ethanol
by Aleksandra Wawro, Jolanta Batog and Weronika Gieparda
Molecules 2021, 26(21), 6467; https://doi.org/10.3390/molecules26216467 - 26 Oct 2021
Cited by 9 | Viewed by 2462
Abstract
Nowadays, more and more attention is paid to the development and the intensification of the use of renewable energy sources. Hemp might be an alternative plant for bioenergy production. In this paper, four varieties of Polish industrial hemp (Białobrzeskie, Tygra, Henola, and Rajan) [...] Read more.
Nowadays, more and more attention is paid to the development and the intensification of the use of renewable energy sources. Hemp might be an alternative plant for bioenergy production. In this paper, four varieties of Polish industrial hemp (Białobrzeskie, Tygra, Henola, and Rajan) were investigated in order to determine which of them are the most advantageous raw materials for the effective production of bioethanol. At the beginning, physical and chemical pretreatment of hemp biomass was carried out. It was found that the most effective is the alkaline treatment with 2% NaOH, and the biomasses of the two varieties were selected for next stages of research: Tygra and Rajan. Hemp biomass before and after pretreatment was analyzed by FTIR and SEM, which confirmed the effectiveness of the pretreatment. Next, an enzymatic hydrolysis process was carried out on the previously selected parameters using the response surface methodology. Subsequently, the two approaches were analyzed: separated hydrolysis and fermentation (SHF) and a simultaneous saccharification and fermentation (SSF) process. For Tygra biomass in the SHF process, the ethanol concentration was 10.5 g∙L−1 (3.04 m3·ha−1), and for Rajan biomass at the SSF process, the ethanol concentration was 7.5 g∙L−1 (2.23 m3·ha−1). In conclusion, the biomass of Polish varieties of hemp, i.e., Tygra and Rajan, was found to be an interesting and promising raw material for bioethanol production. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass II)
Show Figures

Figure 1

15 pages, 3161 KiB  
Article
Effective Utilisation of Halophyte Biomass from Saline Soils for Biorefinering Processes
by Jolanta Batog, Krzysztof Bujnowicz, Weronika Gieparda, Aleksandra Wawro and Szymon Rojewski
Molecules 2021, 26(17), 5393; https://doi.org/10.3390/molecules26175393 - 5 Sep 2021
Cited by 5 | Viewed by 2642
Abstract
The salinity of European soil is increasing every year, causing severe economic damage (estimated 1–3 million hectares in the enlarged EU). This study uses the biomass of halophytes—tall fescue (grass) and hemp of the Białobrzeskie variety from saline soils—for bioenergy, second generation biofuels [...] Read more.
The salinity of European soil is increasing every year, causing severe economic damage (estimated 1–3 million hectares in the enlarged EU). This study uses the biomass of halophytes—tall fescue (grass) and hemp of the Białobrzeskie variety from saline soils—for bioenergy, second generation biofuels and designing new materials—fillers for polymer composites. In the bioethanol obtaining process, in the first stage, the grass and hemp biomass were pretreated with 1.5% NaOH. Before and after the treatment, the chemical composition was determined and the FTIR spectra and SEM pictures were taken. Then, the process of simultaneous saccharification and fermentation (SSF) was carried out. The concentration of ethanol for both the grass and hemp biomass was approx. 7 g·L−1 (14 g·100 g−1 of raw material). In addition, trials of obtaining green composites with halophyte biomass using polymers (PP) and biopolymers (PLA) as a matrix were performed. The mechanical properties of the composites (tensile and flexural tests) were determined. It was found that the addition of a compatibilizer improved the adhesion at the interface of PP composites with a hemp filler. In conclusion, the grass and hemp biomass were found to be an interesting and promising source to be used for bioethanol and biocomposites production. The use of annually renewable plant biomass from saline soils for biorefinering processes opens up opportunities for the development of a new value chains and new approaches to sustainable agriculture. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass II)
Show Figures

Figure 1

16 pages, 14270 KiB  
Article
Use of Machine Learning Methods for Predicting Amount of Bioethanol Obtained from Lignocellulosic Biomass with the Use of Ionic Liquids for Pretreatment
by Małgorzata Smuga-Kogut, Tomasz Kogut, Roksana Markiewicz and Adam Słowik
Energies 2021, 14(1), 243; https://doi.org/10.3390/en14010243 - 5 Jan 2021
Cited by 60 | Viewed by 5493
Abstract
The study objective was to model and predict the bioethanol production process from lignocellulosic biomass based on an example of empirical study results. Two types of algorithms were used in machine learning: artificial neural network (ANN) and random forest algorithm (RF). Data for [...] Read more.
The study objective was to model and predict the bioethanol production process from lignocellulosic biomass based on an example of empirical study results. Two types of algorithms were used in machine learning: artificial neural network (ANN) and random forest algorithm (RF). Data for the model included results of studying bioethanol production with the use of ionic liquids (ILs) and different enzymatic preparations from the following biomass types: buckwheat straw and biomass from four wastelands, including a mixture of various plants: stems of giant miscanthus, common nettle, goldenrod, common broom, fireweed, and hay (a mix of grasses). The input variables consisted of different ionic liquids (imidazolium and ammonium), enzymatic preparations, enzyme doses, time and temperature of pretreatment, and type of yeast for alcoholic fermentation. The output value was the bioethanol concentration. The multilayer perceptron (MLP) was used in the artificial neural networks. Two model types were created; the training dataset comprised 120 vectors (14 elements for Model 1 and 11 elements for Model 2). Assessment of the optimum random forest was carried out using the same division of experimental points (two random datasets, containing 2/3 for training and 1/3 for testing) and the same criteria used for the artificial neural network models. Data for mugwort and hemp were used for validation. In both models, the coefficient of determination for neural networks was <0.9, while for RF it oscillated around 0.95. Considering the fairly large spread of the determination coefficient, two hybrid models were generated. The use of the hybrid approach in creating models describing the present bioethanol production process resulted in an increase in the fit of the model to R2 = 0.961. The hybrid model can be used for the initial classification of plants without the necessity to perform lengthy and expensive research related to IL-based pretreatment and further hydrolysis; only their lignocellulosic composition results are needed. Full article
(This article belongs to the Special Issue Technologies for Biofuels and Energy)
Show Figures

Figure 1

17 pages, 8546 KiB  
Review
Recent Advancements in Biological Conversion of Industrial Hemp for Biofuel and Value-Added Products
by Anqi Ji, Linjing Jia, Deepak Kumar and Chang Geun Yoo
Fermentation 2021, 7(1), 6; https://doi.org/10.3390/fermentation7010006 - 5 Jan 2021
Cited by 40 | Viewed by 13526
Abstract
Sustainable, economically feasible, and green resources for energy and chemical products have people’s attention due to global energy demand and environmental issues. Last several decades, diverse lignocellulosic biomass has been studied for the production of biofuels and biochemicals. Industrial hemp has great market [...] Read more.
Sustainable, economically feasible, and green resources for energy and chemical products have people’s attention due to global energy demand and environmental issues. Last several decades, diverse lignocellulosic biomass has been studied for the production of biofuels and biochemicals. Industrial hemp has great market potential with its versatile applications. With the increase of the hemp-related markets with hemp seed, hemp oil, and fiber, the importance of hemp biomass utilization has also been emphasized in recent studies. Biological conversions of industrial hemp into bioethanol and other biochemicals have been introduced to address the aforementioned energy and environmental challenges. Its high cellulose content and the increased production because of the demand for cannabidiol oil and hempseed products make it a promising future bioenergy and biochemical source. Effective valorization of the underutilized hemp biomass can also improve the cost-competitiveness of hemp products. This manuscript reviews recent biological conversion strategies for industrial hemp and its characteristics. Current understanding of the industrial hemp properties and applied conversion technologies are briefly summarized. In addition, challenges and future perspectives of the biological conversion with industrial hemp are discussed. Full article
(This article belongs to the Special Issue Ethanol and Value-Added Co-Products 2.0)
Show Figures

Graphical abstract

15 pages, 810 KiB  
Article
Silica Production across Candidate Lignocellulosic Biorefinery Feedstocks
by Yifeng Xu, Nick Porter, Jamie L. Foster, James P. Muir, Paul Schwab, Byron L. Burson and Russell W. Jessup
Agronomy 2020, 10(1), 82; https://doi.org/10.3390/agronomy10010082 - 7 Jan 2020
Cited by 7 | Viewed by 3425
Abstract
Biofuels produced from non-food lignocellulosic feedstocks have the potential to replace a significant percentage of fossil fuels via high yield potential and suitability for cultivation on marginal lands. Commercialization of dedicated lignocellulosic crops into single biofuels, however, is hampered by conversion technology costs [...] Read more.
Biofuels produced from non-food lignocellulosic feedstocks have the potential to replace a significant percentage of fossil fuels via high yield potential and suitability for cultivation on marginal lands. Commercialization of dedicated lignocellulosic crops into single biofuels, however, is hampered by conversion technology costs and decreasing oil prices. Integrated biorefinery approaches, where value-added chemicals are produced in conjunction with biofuels, offer significant potential towards overcoming this economic disadvantage. In this study, candidate lignocellulosic feedstocks were evaluated for their potential biomass and silica yields. Feedstock entries included pearl millet-napiergrass (“PMN”; Pennisetum glaucum [L.] R. Br. × P. purpureum Schumach.), napiergrass (P. purpureum Schumach.), annual sorghum (Sorghum bicolor [L.] Moench), pearl millet (P. glaucum [L.] R. Br.), perennial sorghum (Sorghum spp.), switchgrass (Panicum virgatum L.), sunn hemp (Crotalaria juncea L.), giant miscanthus (Miscanthus × giganteus J.M. Greef and Deuter), and energy cane (Saccharum spp.). Replicated plots were planted at three locations and characterized for biomass yield, chemical composition including hemicellulose, cellulose, acid detergent lignin (ADL), neutral detergent fiber (NDF), crude protein (CP), and silica concentration. The PMN, napiergrass, energy cane, and sunn hemp had the highest biomass yields. They were superior candidates for ethanol production due to high cellulose and hemicellulose content. They also had high silica yield except for sunn hemp. Silica yield among feedstock entries ranged from 41 to 3249 kg ha−1. Based on high bioethanol and biosilica yield potential, PMN, napiergrass, and energy cane are the most promising biorefinery feedstock candidates for improving biofuel profitability. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

11 pages, 2228 KiB  
Article
Chemical and Enzymatic Treatment of Hemp Biomass for Bioethanol Production
by Aleksandra Wawro, Jolanta Batog and Weronika Gieparda
Appl. Sci. 2019, 9(24), 5348; https://doi.org/10.3390/app9245348 - 6 Dec 2019
Cited by 34 | Viewed by 4359
Abstract
In this study chemical and enzymatic treatment of hemp biomass were optimized to obtain maximum ethanol production. In the first stage, physical and chemical pretreatment of hemp biomass was carried out. It was found that the Tygra variety is susceptible to alkaline treatment [...] Read more.
In this study chemical and enzymatic treatment of hemp biomass were optimized to obtain maximum ethanol production. In the first stage, physical and chemical pretreatment of hemp biomass was carried out. It was found that the Tygra variety is susceptible to alkaline treatment at an optimum concentration of 2% NaOH. Next, the effect of NaOH on the value of reducing sugars and the chemical composition of the solid fraction before and after the treatment was determined. Hemp biomass before and after the chemical treatment was analysed by FTIR spectra and SEM. The effect of enzymatic hydrolysis, i.e., substrate content, temperature, time, pH and dose of enzyme by means of Response Surface Methodology on glucose content was determined. The highest glucose value was observed at 50 °C, in time process between 48 and 72 h, and the dose of enzyme was not less than 20 FPU·g−1. After the optimization of enzymatic hydrolysis two processes of ethanol fermentation from hemp biomass, SHF and SSF, were carried out. In the SHF process a 40% higher concentration of ethanol was obtained (10.51 g/L). In conclusion, hemp biomass was found to be an interesting and promising source to be used for bioethanol production. Full article
(This article belongs to the Special Issue Cellulose Conversion Technology)
Show Figures

Figure 1

Back to TopTop