Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = heat budget of the ocean upper mixed layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11064 KB  
Article
Upper Ocean Responses to Tropical Cyclone Mekunu (2018) in the Arabian Sea
by Dan Ren, Shuzong Han and Shicheng Wang
J. Mar. Sci. Eng. 2024, 12(7), 1177; https://doi.org/10.3390/jmse12071177 - 13 Jul 2024
Cited by 1 | Viewed by 1822
Abstract
Based on Argo observations and a coupled atmosphere–ocean–wave model, the upper ocean responses to the tropical cyclone (TC) Mekunu (2018) were investigated, and the role of a pre-existing cold eddy in modulating the temperature response to TC Mekunu was quantified by employing numerical [...] Read more.
Based on Argo observations and a coupled atmosphere–ocean–wave model, the upper ocean responses to the tropical cyclone (TC) Mekunu (2018) were investigated, and the role of a pre-existing cold eddy in modulating the temperature response to TC Mekunu was quantified by employing numerical experiments. With TC Mekunu’s passage, the mixed layer depth (MLD) on both sides of its track significantly deepened. Moreover, two cold patches (<26 °C) occurred, where the maximum cooling of the mixed layer temperature (MLT) reached 6.62 °C and 6.44 °C. Both the MLD and MLT changes exhibited a notable rightward bias. However, the changes in the mixed layer salinity (MLS) were more complex. At the early stage, the MLS on both sides of the track increased by approximately 0.5 psu. When TC Mekunu made landfall, the MLS change around the track was asymmetric. Significantly, a cold eddy pre-existed where the second cold patch emerged, and this eddy was intensified after TC Mekunu’s passage, with an average sea surface height reduction of approximately 2.7 cm. By employing the stand-alone ocean model, the numerical experimental results demonstrated that the pre-existing cold eddy enhanced TC-induced MLT cooling by an average of approximately 0.41 °C due to steeper temperature stratification at the base of mixed layer. Moreover, heat budget analysis indicated that the pre-existing cold eddy also enhanced subsurface temperature cooling mainly through zonal advection. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

18 pages, 3755 KB  
Article
The Heat Budget of the Tropical Pacific Mixed Layer during Two Types of El Niño Based on Reanalysis and Global Climate Model Data
by Alexander Osipov and Daria Gushchina
Atmosphere 2024, 15(1), 47; https://doi.org/10.3390/atmos15010047 - 30 Dec 2023
Cited by 3 | Viewed by 2564
Abstract
The heat budget of the equatorial Pacific mixed layer during El Niño formation was studied based on reanalysis (GLORYS2V4) and model data for the modern climate. The focus of the study is on the so-called El Niño diversity, i.e., the existence of different [...] Read more.
The heat budget of the equatorial Pacific mixed layer during El Niño formation was studied based on reanalysis (GLORYS2V4) and model data for the modern climate. The focus of the study is on the so-called El Niño diversity, i.e., the existence of different types of events that are characterized by different locations and intensities, as well as significantly different teleconnection all around the world. The analysis of the processes that participate in the formation of different El Niño types may serve for a better understanding of the El Niño dynamic and contribute to improving its forecast. Two classifications, based on the location and intensity of the events, were considered: strong/moderate and Eastern Pacific (EP)/Central Pacific (CP). The analysis did not reveal a significant difference in the heat budget of the mixed layer between strong and EP El Niño events, as well as between moderate and CP events. The major difference in the generation mechanism of strong (EP) and moderate (CP) El Niño events consists of the magnitude of heating produced by ocean heat budget components with higher heating rates for strong (EP) events. The evolution of sea surface temperature anomalies (SSTA) is governed primarily by oceanic advection. The vertical advection (due to the thermocline feedback) is the main contributor to SSTA growth in the eastern Pacific regardless of El Niño’s type. In the Central Pacific, horizontal advection is more important than vertical one, with a stronger impact of meridional processes for both strong and moderate regimes. Furthermore, the evaluation of the CMIP5 model’s skill in the simulation of the processes responsible for the formation of different El Niño types was carried out. The analysis of the heat budget of the mixed layer in the CMIP5 ensemble demonstrated that the most successful models are CCSM4, CESM1-BGC, CMCC-CMS, CNRM-CM5, GFDL-ESM2M, and IPSL-CM5B-LR. They are capable of reproducing the most important contribution of the advection terms in the SSTA tendency, keeping the major role of the thermocline feedback (and vertical advection) in the eastern Pacific, and do not overestimate the contribution of zonal advective feedback. These models are recommended to be used for the analysis of El Niño mechanism modification in the future climate. Full article
(This article belongs to the Special Issue Tropical Cyclones: Observations and Prediction)
Show Figures

Figure 1

24 pages, 5477 KB  
Article
Numerical Experiments of Temperature Mixing and Post-Storm Re-Stratification over the Louisiana Shelf during Hurricane Katrina (2005)
by Mohammad Nabi Allahdadi, Chunyan Li and Nazanin Chaichitehrani
J. Mar. Sci. Eng. 2022, 10(8), 1082; https://doi.org/10.3390/jmse10081082 - 7 Aug 2022
Cited by 3 | Viewed by 2351
Abstract
Studying mixing and re-stratification during and after hurricanes have important implications for the simulation of circulation and bio-geochemical processes in oceanic and shelf waters. Numerical experiments using FVCOM on an unstructured computational mesh were implemented to study the direct effect of hurricane winds [...] Read more.
Studying mixing and re-stratification during and after hurricanes have important implications for the simulation of circulation and bio-geochemical processes in oceanic and shelf waters. Numerical experiments using FVCOM on an unstructured computational mesh were implemented to study the direct effect of hurricane winds on the mixing and temperature redistribution of the stratified Louisiana shelf during Hurricane Katrina (2005), as well as the post-storm re-stratification timescale. The model was forced by Katrina’s wind stress obtained from a combination of H-Wind database and NCEP model. The climatological profiles of temperature and salinity for August (the month in which Katrina occurred) from the world ocean atlas (WOA, 2013) were used as the pre-storm conditions over the shelf. Model results for sea surface temperature (SST) and mixed layer depth (MLD) were validated versus SST data from an optimally interpolated satellite product, and the MLD was calculated from the heat budget equation of the mixed layer. Model results were used to examine the temporal and spatial responses of SST and MLD over the shelf to Katrina. Results showed that intense mixing occurred within 1–1.1 RMW (RMW is the radius of maximum wind for Katrina), with turbulent mixing as the dominant mixing force for regions far from the eye, although upwelling was an important contributor to modulating SST and MLD. During the peak of Katrina and for the shelf regions severely affected by the hurricane wind, three distinct temperature zones were formed across the water column: an upper mixed layer, a transition zone, and a lower upwelling zone. Shelf re-stratification started from 3 h to more than two weeks after the landfall, depending on the distance from the track. The mixing during Hurricane Katrina affected the seasonal summertime hypoxic zone over the Louisiana shelf and likely contributed to the water column re-oxygenation. Full article
(This article belongs to the Special Issue Latest Advances in Physical Oceanography)
Show Figures

Figure 1

16 pages, 6683 KB  
Article
Summer Marine Heatwaves in the Kuroshio-Oyashio Extension Region
by Yanzhen Du, Ming Feng, Zhenhua Xu, Baoshu Yin and Alistair J. Hobday
Remote Sens. 2022, 14(13), 2980; https://doi.org/10.3390/rs14132980 - 22 Jun 2022
Cited by 20 | Viewed by 5218
Abstract
During 1982–2021, the highest sea surface temperature (SST) variability over the North Pacific was in the Kuroshio-Oyashio Extension (KOE) region, with more intense marine heatwaves (MHWs), especially during summertime. In this study, we explored the evolution and driving factors of the strongest summer [...] Read more.
During 1982–2021, the highest sea surface temperature (SST) variability over the North Pacific was in the Kuroshio-Oyashio Extension (KOE) region, with more intense marine heatwaves (MHWs), especially during summertime. In this study, we explored the evolution and driving factors of the strongest summer MHWs based on their cumulative intensity using satellite observations and reanalyzed model results. Strong summer MHWs in 1999, 2008, 2012, and 2016 were initiated and peaked around summer. The more recent summer MHW events in 2018, 2020, and 2021 appeared to be associated with intermittent MHW events in the previous winter that extended to boreal summer. Based on a mixed layer temperature budget analysis from March to their peaks in summer, MHWs in 1999, 2008, 2012, and 2016 were primarily driven by the air-sea heat flux anomalies, with anomalous shortwave radiation due to reduced cloud cover being the dominant factor. Summer MHWs in 2018, 2020, and 2021 were mainly contributed by the ocean memory of winter warming. The northward shift of the Kuroshio Extension axis, the northward intrusion of the anticyclonic eddies, and the decadal warming trend may contribute to the positive sea surface height anomalies and increased upper ocean heat content in the KOE to increase winter SST and precondition the summer MHWs. Understanding MHW variability and the underlying mechanisms will help manage the marine ecosystem of the KOE region, as well as predict climate change impacts. Full article
Show Figures

Figure 1

14 pages, 16699 KB  
Article
The Influence of Wind-Induced Waves on ENSO Simulations
by Yao Hu, Xiaoxiao Tan, Youmin Tang, Zheqi Shen and Ying Bao
J. Mar. Sci. Eng. 2021, 9(5), 457; https://doi.org/10.3390/jmse9050457 - 23 Apr 2021
Viewed by 2490
Abstract
We evaluated the influence of wind-induced waves on El Niño-Southern Oscillation (ENSO) simulations based on the First Institute of Oceanography-Earth System Model version 2 (FIO-ESM 2.0), a global coupled general circulation model (GCM) with a wave component. Two sets of experiments, the GCM, [...] Read more.
We evaluated the influence of wind-induced waves on El Niño-Southern Oscillation (ENSO) simulations based on the First Institute of Oceanography-Earth System Model version 2 (FIO-ESM 2.0), a global coupled general circulation model (GCM) with a wave component. Two sets of experiments, the GCM, with and without a wave model, respectively, were conducted in parallel. The simulated sea surface temperature (SST) was cooled by introducing the wave model via the enhancement of the vertical mixing in the ocean upper layer. The strength of ENSO was intensified and better simulated with the inclusion of wave-induced mixing, particularly the La Niña amplitude. Furthermore, the simulated amplitude and spatial pattern of El Niño events were slightly altered with the wave model. Heat budget analyses revealed the intensification of La Niña events to be generally attributed to wave-induced vertical advection, followed by the zonal and meridional advection terms. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

14 pages, 4116 KB  
Article
Tropical Atlantic Mixed Layer Buoyancy Seasonality: Atmospheric and Oceanic Physical Processes Contributions
by Ibrahima Camara, Juliette Mignot, Nicolas Kolodziejczyk, Teresa Losada and Alban Lazar
Atmosphere 2020, 11(6), 649; https://doi.org/10.3390/atmos11060649 - 18 Jun 2020
Viewed by 3575
Abstract
This study investigates the physical processes controlling the mixed layer buoyancy using a regional configuration of an ocean general circulation model. Processes are quantified by using a linearized equation of state, a mixed-layer heat, and a salt budget. Model results correctly reproduce the [...] Read more.
This study investigates the physical processes controlling the mixed layer buoyancy using a regional configuration of an ocean general circulation model. Processes are quantified by using a linearized equation of state, a mixed-layer heat, and a salt budget. Model results correctly reproduce the observed seasonal near-surface density tendencies. The results indicate that the heat flux is located poleward of 10° of latitude, which is at least three times greater than the freshwater flux that mainly controls mixed layer buoyancy. During boreal spring-summer of each hemisphere, the freshwater flux partly compensates the heat flux in terms of buoyancy loss while, during the fall-winter, they act together. Under the seasonal march of the Inter-tropical Convergence Zone and in coastal areas affected by the river, the contribution of ocean processes on the upper density becomes important. Along the north Brazilian coast and the Gulf of Guinea, horizontal and vertical processes involving salinity are the main contributors to an upper water change with a contribution of at least twice as much the temperature. At the equator and along the Senegal-Mauritanian coast, vertical processes are the major oceanic contributors. This is mainly due to the vertical gradient of temperature at the mixed layer base in the equator while the salinity one dominates along the Senegal-Mauritania coast. Full article
(This article belongs to the Special Issue Tropical Atlantic Variability)
Show Figures

Figure 1

25 pages, 22001 KB  
Article
Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data Acquired via Multiple Satellites and Moored Array
by Han Zhang, Xiaohui Liu, Renhao Wu, Fu Liu, Linghui Yu, Xiaodong Shang, Yongfeng Qi, Yuan Wang, Xunshu Song, Xiaohui Xie, Chenghao Yang, Di Tian and Wenyan Zhang
Remote Sens. 2019, 11(20), 2360; https://doi.org/10.3390/rs11202360 - 11 Oct 2019
Cited by 37 | Viewed by 6897
Abstract
Tropical cyclones (TCs) are natural disasters for coastal regions. TCs with maximum wind speeds higher than 32.7 m/s in the north-western Pacific are referred to as typhoons. Typhoons Sarika and Haima successively passed our moored observation array in the northern South China Sea [...] Read more.
Tropical cyclones (TCs) are natural disasters for coastal regions. TCs with maximum wind speeds higher than 32.7 m/s in the north-western Pacific are referred to as typhoons. Typhoons Sarika and Haima successively passed our moored observation array in the northern South China Sea in 2016. Based on the satellite data, the winds (clouds and rainfall) biased to the right (left) sides of the typhoon tracks. Sarika and Haima cooled the sea surface ~4 and ~2 °C and increased the salinity ~1.2 and ~0.6 psu, respectively. The maximum sea surface cooling occurred nearly one day after the two typhoons. Station 2 (S2) was on left side of Sarika’s track and right side of Haima’s track, which is studied because its data was complete. Strong near-inertial currents from the ocean surface toward the bottom were generated at S2, with a maximum mixed-layer speed of ~80 cm/s. The current spectrum also shows weak signal at twice the inertial frequency (2f). Sarika deepened the mixed layer, cooled the sea surface, but warmed the subsurface by ~1 °C. Haima subsequently pushed the subsurface warming anomaly into deeper ocean, causing a temperature increase of ~1.8 °C therein. Sarika and Haima successively increased the heat content anomaly upper than 160 m at S2 to ~50 and ~100 m°C, respectively. Model simulation of the two typhoons shows that mixing and horizontal advection caused surface ocean cooling, mixing and downwelling caused subsurface warming, while downwelling warmed the deeper ocean. It indicates that Sarika and Haima sequentially modulated warm water into deeper ocean and influenced internal ocean heat budget. Upper ocean salinity response was similar to temperature, except that rainfall refreshed sea surface and caused a successive salinity decrease of ~0.03 and ~0.1 psu during the two typhoons, changing the positive subsurface salinity anomaly to negative Full article
(This article belongs to the Special Issue Tropical Cyclones Remote Sensing and Data Assimilation)
Show Figures

Graphical abstract

Back to TopTop