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Abstract: During 1982–2021, the highest sea surface temperature (SST) variability over the North
Pacific was in the Kuroshio-Oyashio Extension (KOE) region, with more intense marine heatwaves
(MHWs), especially during summertime. In this study, we explored the evolution and driving factors
of the strongest summer MHWs based on their cumulative intensity using satellite observations and
reanalyzed model results. Strong summer MHWs in 1999, 2008, 2012, and 2016 were initiated and
peaked around summer. The more recent summer MHW events in 2018, 2020, and 2021 appeared to
be associated with intermittent MHW events in the previous winter that extended to boreal summer.
Based on a mixed layer temperature budget analysis from March to their peaks in summer, MHWs in
1999, 2008, 2012, and 2016 were primarily driven by the air-sea heat flux anomalies, with anomalous
shortwave radiation due to reduced cloud cover being the dominant factor. Summer MHWs in 2018,
2020, and 2021 were mainly contributed by the ocean memory of winter warming. The northward
shift of the Kuroshio Extension axis, the northward intrusion of the anticyclonic eddies, and the
decadal warming trend may contribute to the positive sea surface height anomalies and increased
upper ocean heat content in the KOE to increase winter SST and precondition the summer MHWs.
Understanding MHW variability and the underlying mechanisms will help manage the marine
ecosystem of the KOE region, as well as predict climate change impacts.

Keywords: marine heatwaves; Kuroshio-Oyashio Extension; sea surface temperature; satellites;
climate change

1. Introduction

Extreme events in the ocean are becoming more frequent, causing severe ecological
disasters and socio-economic losses [1–3]. Marine heatwaves (MHWs; [4]) are extreme
thermal events with abnormally high sea surface temperature (SST) at a specific location
during a certain period. They can extend over hundreds to thousands of kilometers and
last for up to hundreds of days [5]. MHWs can be affected by atmospheric processes and
ocean circulation processes (e.g., [6,7]). Notably, MHWs can lead to severe environmental
and ecological impacts, such as decreased surface chlorophyll levels due to increased ocean
stratification [8], range shift [9], mass mortality of marine species [10,11], and causing
detrimental impacts on fisheries [12,13].

Many MHWs, with diverse physical drivers, have been recorded over the global
ocean [5,6]. The five major West Boundary Currents (WBCs) and their extension regions,
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with large SST variability of 2~5 ◦C, are prominent MHW hotspots [6], such as MHWs
off southeast Australia in 2015/16 [14,15], the Northwest Atlantic in 2012 and during
1993–2018 [16], and the Southwest Atlantic in 2017 [17]. Recently, MHWs in the Northwest
Pacific have also attracted wide attention: Miyama et al. [18] explained that the MHWs in
the Oyashio region during summer in 2010–2016 were attributed to increased anticyclonic
eddy activity; Kuroda and Setou [19] reported that a MHW occurred in July-August
2021 over the Northwest Pacific, including the entire Sea of Japan and part of the Sea
of Okhotsk, which was mainly caused by anomalous surface heat flux forced by the
atmospheric conditions.

The Kuroshio-Oyashio Extension (KOE; 141–175◦E, 35–44◦N) region has the largest SST
variability (Figure 1a) and the fastest long-term warming rate in the North Pacific [20,21].
Therefore, it is imperative to systematically detect and quantify the mechanism of MHWs in
the KOE region. The KOE is located between the northern branch of the Kuroshio Extension
(KE; 141–150◦E, 35–40◦N) front and the Oyashio subarctic front, with a large meridional
SST gradient and vigorous air-sea heat exchanges [22,23]. The Kuroshio, the WBC of the
North Pacific subtropical gyre, forms a swift eastward jet along the coast of Japan before
leaving the Japan coast at ~35◦N, carrying warm and saline waters northeastward and
releasing large amounts of heat into the atmosphere [24,25]. The Oyashio is the WBC of the
western subarctic gyre, branching off the Japan coast at ~41◦N, of which part of the Oyashio
water in the intermediate layer is fed into the subtropical gyre, and the rest returns to the
western subarctic gyre [26]. The zone between the two extensions is important fishing
ground. SST anomalies (SSTA) in this region greatly affect the population dynamics of
Japanese sardines [27,28] and saury migration [29,30].
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Figure 1. (a) Standard deviation of sea surface temperature anomalies (SSTA, shading) and mean 
sea surface height (gray lines) in the Northwest Pacific Ocean; (b) Standard deviation of SSTA in the 
boreal spring (AMJ), summer (JAS), autumn (OND), and winter (JFM); (c) Amplitude of annual 
mean geostrophic current velocity (shading) and sketches of main near-surface currents (black 
lines). SST anomalies are derived from NOAA OISST V2 with 0.25° × 0.25° resolution from 1982 to 

Figure 1. (a) Standard deviation of sea surface temperature anomalies (SSTA, shading) and mean
sea surface height (gray lines) in the Northwest Pacific Ocean; (b) Standard deviation of SSTA in
the boreal spring (AMJ), summer (JAS), autumn (OND), and winter (JFM); (c) Amplitude of annual
mean geostrophic current velocity (shading) and sketches of main near-surface currents (black lines).
SST anomalies are derived from NOAA OISST V2 with 0.25◦ × 0.25◦ resolution from 1982 to 2021,
and sea surface height and geostrophic current data are from CMEMS with 0.25◦ × 0.25◦ resolution
from 1993 to 2021. The area framed by the black dashed lines represent the KOE domain (141–175◦E,
35–44◦N), the inset of (a) shows the pattern of the North Pacific.

Previous research in the KOE and KE regions mainly focused on wintertime SST
variability, with identified driving factors including El Niño-Southern Oscillation (ENSO)-
driven atmospheric circulation disturbances [31], KE path migration [32,33], and mixed
layer depth (MLD) variation [34,35]. The KOE region has the highest SST variability in
the Northwest Pacific (Figure 1a), especially in summer (Figure 1b), with the potential
for strong MHWs. In this study, we examined SST and MHW variability in the KOE
region, with a focus on the summer season, aiming to analyze their evolution, quantify
their driving factors, and assess the influences from atmospheric circulation systems and
ocean circulation. This paper is organized as follows. Section 2 describes the materials and
methods; In Section 3, we detect MHWs in the KOE region during 1982–2021, and analyze
their forcing mechanisms; Sections 4 and 5 provide discussion and conclusions.
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2. Materials and Methods
2.1. Materials
2.1.1. Satellite Observation Data

The datasets and key components used in this study are listed in Table 1. The National
Oceanic and Atmospheric Administration Optimum Interpolated Sea Surface Temperature
(NOAA OISST) Version 2 [36] is based upon the Advanced Very High-Resolution Radiome-
ter (AVHRR) satellite, with daily and monthly resolution. The Ssalto/Ducas daily sea
surface height (SSH) and geostrophic current (u, v) products on the Copernicus Marine En-
vironment Monitoring Service (CMEMS) website are used, including the delayed time data
from 1993 to 2020 and near-real time data from 2021 [37]. The monthly outgoing longwave
radiation (OLR) data from NOAA polar-orbiting satellites [38] and the monthly precipita-
tion (PRE) data from Climate Prediction Center (CPC) Merged Analysis of Precipitation
(CMAP) [39] are also used.

Table 1. List of the datasets and key components in this study.

Data Type Data Name Periods Spatial Time Variable

Satellite–observation data

NOAA OISST 1982–2021 0.25◦ × 0.25◦ Daily; Monthly SST
CMEMS data 1993–2021 0.25◦ × 0.25◦ Daily SSH; u; v

NOAA interpolated OLR 1982–2021 2.5◦ × 2.5◦ Monthly OLR
CPC CMAP 1982–2021 2.5◦ × 2.5◦ Monthly PRE

Reanalysis data NCEP GODAS 1982–2021 1◦ × 0.33◦ Pentad; Monthly T; u; v; w; Heat flux; MLD
NCEP CFSR/CFSv2 1982–2021 0.5◦ × 0.5◦ Daily; Monthly SLP; TCC; Heat flux

2.1.2. Reanalysis Data

For the ocean, we used data from the National Centers for Environmental Prediction
(NCEP) Global Ocean Data Analysis System (GODAS) [40]. This product is based on a
quasi-global configuration of the Geophysical Fluid Dynamics Laboratory Modular Ocean
Model version 3, assimilating data from expendable bathythermographs (XBTs), Tropical
Atmosphere Ocean (TAO), Triangle Trans-Ocean Buoy Network (TRITON), Prediction and
Research Moored Array in the Tropical Atlantic (PIRATA), and Argo profiling floats. Data
used in the study include potential temperature (T), zonal and meridional components
of horizontal current (u, v), geometric vertical velocity (w), air-sea heat flux, and MLD.
For atmospheric variables, data from the National Centers for Environmental Prediction
(NCEP) Climate Forecast System Reanalysis (CFSR) [41] and Climate Forecast System
version 2 (CFSv2) [42] were used, including monthly sea level pressure (SLP), total cloud
cover (TCC), and daily air-sea heat flux (shortwave radiation, longwave radiation, sensible
heat flux, latent heat flux).

2.2. MHW Definition

The definition of MHW was following Hobday et al. [4], as a discrete prolonged
anomalously warm water event when the daily SST exceeds a 90th percentile threshold
based on a long-term climatology for five or more days. The 90th percentile threshold
and climatological mean were calculated for each calendar day from daily SST within an
11-day window and a 31-day moving average. MHWs with gaps of less than two days
were considered a continuous event. In this study, the threshold and climatology were
determined over a base period of 1982–2021 from NOAA OISST. Here, we describe MHW
characteristics by a series of metrics, including mean intensity (the average temperature
anomaly above the threshold over the duration of an event), days (the total number of
MHW days in each year or season), and cumulative intensity (the integrated intensity over
the duration of the event) [4,14].



Remote Sens. 2022, 14, 2980 4 of 16

2.3. Model Verification

Before analyzing the mixed layer (ML) heat budget, we assessed the accuracy of
GODAS temperature data with satellite observation. The Root Mean Square Error (RMSE)
of summer daily SST between GODAS and OISST was mostly less than 1 ◦C, except near
the Japan coast (Figure 2a), with correlation coefficient (CC) mostly above 0.8 and reaching
~0.9 in eastern KOE (Figure 2b). Averaged in the KOE region, summer SSTA from the two
products were well correlated, with a correlation of 0.97 (Figure 2c). Thus, the GODAS SST
can realistically reproduce satellite SST variability in this region. Note that GODAS doesn’t
assimilate satellite SST data, which may have caused small differences between the two in
some of the recent years.
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Figure 2. (a) The Root Mean Square Error and (b) Correlation coefficient of JAS daily SST in the KOE
region between GODAS SST and OISST. (c) Time series of JAS-averaged surface temperature anomaly
(GODAS, blue line) and satellite SSTA (OISST, red line), and their correlation coefficient in the KOE.
The pentad 1◦ × 0.33◦ GODAS SST grid is interpolated onto the daily 0.25◦ × 0.25◦ OISST grid.
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2.4. Mixed Layer Heat Budget

To quantitatively assess the SST warming during the MHWs, we performed a heat
budget analysis of the ocean ML temperature [43–45]. Averaged within a control area A in
the KOE domain (Figure 1a, box), the ML temperature equation can be written as:

1
A

∫ A ∂Tm

∂t
dA = − 1

A

∫ A
Um·∇TmdA +

1
ρCP A

∫ A Qnet

hm
dA− 1

A

∫ A we∆T
hm

dA + Res (1)

where Tm is the ML temperature, representing summer SST; hm is the MLD; Um is the
horizontal velocity vertically averaged in the ML, including the zonal (u) and meridional
(v) components, and∇ denotes the gradient operator in the two directions; ρ and CP are the
reference density (1024 kg m−3) and heat capacity of seawater (3985 J kg−1 ◦C−1), respec-
tively; Qnet is net air-sea heat flux; we is entrainment velocity. In the following, we refer to
the terms in Equation (1) as temperature tendency (left, TTotal), and the contribution of the
horizontal advection (TAdv), surface net heat flux (TQnet ), vertical entrainment (TVE), and
residual (TRes). In particular, the MLD is provided in the GODAS output, which is estimated
as a depth where the density difference relative to the surface level is 0.03 kg m−3 [40,46].
In summer, the lowest MLD is limited to 20 m. ∆T = Tm − Td, which is the temperature
difference between ML temperature (Tm) and at 10 m below the ML base (Td) [47].

The net air-sea heat flux is decomposed as:

Qnet = Qsw + Qlw + Qsh f + Qlh f
= q(0)− q(−h)+Qlw + Qsh f + Qlh f

(2)

where Qsw is the shortwave radiation absorbed in the ML, and Qlw, Qsh f , Qlh f are the
surface net longwave radiation, sensible heat flux, and latent heat flux, respectively. More-
over, q(0) is the surface download shortwave radiative flux, and q(−h) represents the
penetrating shortwave radiation [48]. In the remainder of this paper, we express the surface
heat flux into (out of) the ocean as a positive (negative) heat flux.

3. Results
3.1. MHWs in the KOE during 1982–2021

The frequency of MHWs in the KOE region showed a prominent increase over the
past four decades, especially in the last decade, which was closely related to the observed
long-term warming trend (Figure 3a; [49,50]). The mean intensity and cumulative intensity
of MHW showed noticeable seasonal variations, with weaker seasonal variations in the
total MHW days (Figure 3b,d,f). Particularly, the cumulative intensity of MHW, which
combines the effects of mean intensity and duration, is a good proxy for the potential
impact of MHW on marine ecosystems [51]. The cumulative intensity of MHWs in the
KOE region was highest in summer, almost twice as those in spring or winter (Figure 3f),
consistent with strong summer SSTA variability (Figure 1b).

Focusing on the summer MHWs in the KOE region, the seven strongest events were se-
lected based on the summer averaged cumulative intensity exceeding 30 ◦C day (Figure 3g).
The MHWs in 1999, 2008, 2012, and 2016 were mainly initiated and peaked in summer,
with some smaller intermittent MHWs in other seasons (Figure 4). However, the MHWs in
2018, 2020, and 2021 already existed in the previous winter (particularly in March), and
the warm anomalies continued to develop in spring and peaked in summertime (Figure 4).
Other stronger summer MHW events, such as 1998, 2010, 2011, and 2013 will be briefly
described in Appendix A.
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Figure 3. (a) Times series of daily SSTA (black line) averaged over the KOE region and the MHWs (red
shading) detected using the 90th percentile threshold (blue line). Anomaly is relative to the 1982–2021
climatology and the red line denotes the linear trend. (b) The mean intensity (Meanint) of MHWs
in different seasons; (d,f) same as (b), but for average total days (Days) and average cumulative
intensity (Cumint); (c) The JAS averaged MHW mean intensity; (e,g) same as (c), but for total days
and cumulative intensity. Red dots in (g) indicate the seven MHWs with the highest cumulative
intensity in JAS.

3.2. Mechanisms of MHWs

In this section, we used the ML heat budget analysis to understand the driving
mechanisms of the strongest MHWs in JAS.

3.2.1. Heat Budget Analysis

To quantitatively evaluate the driving mechanisms of the seven strongest MHWs in
the KOE region, we examined the daily ML temperature budget from March to September
(Figure 5), which covers the seasonal warming period. The climatology ML temperature
reaches a peak in early-September. The seasonal warming is mainly controlled by the net air-
sea heat flux, with little contribution from advection. Notably, entrainment cooling becomes
increasingly important in summer, partly balancing the surface heat flux contribution
(Figure 5a; [34]).
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Peak temperature anomalies of summer MHWs in 1999, 2008, 2012, and 2016 were
mainly contributed by air-sea heat flux anomalies (1.3 ◦C, 1.4 ◦C, 2.2 ◦C and 1.2 ◦C, re-
spectively; Figure 5b). In 2018, 2020, and 2021, however, significant warming had already
existed at the end of previous winters (1 March), at 1.0 ◦C, 1.1 ◦C, and 0.8 ◦C, respectively.
Contributions from anomalous air-sea heat fluxes were less significant (Figure 5b). Thus,
the summer MHW peaks in the early events were mainly caused by anomalous air-sea heat
flux, whereas in 2018, 2020, and 2021, ocean memory of winter warming was the key factor.

3.2.2. The Effect of Air-Sea Heat Flux

The summer MHWs in 1999, 2008, 2012, and 2016 were mainly caused by air-sea heat
flux anomalies (Figure 5b). Based on NCEP CFSR/CFSv2 atmospheric reanalysis products,
shortwave radiation flux anomalies were the leading component in causing the peak ML
temperature anomalies among the surface heat flux terms in 1999, 2008, 2012, 2016, and
2018 (Figure 6a). Consequently, shortwave radiation anomalies were the major driving
force of the summer MHWs in 1999, 2008, 2012, 2016. Other flux terms played a lesser
role in the MHW development. In 2018, the shortwave radiation contribution was only
secondary to winter warming in causing the summer MHW (Figure 5b).
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bars. The units of the right panels are the same as the left panels.
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During summertime, the air-sea feedback between cloud cover and SST was particularly
significant [46,52]. Reduced TCC in the KOE region corresponded well with the increased
shortwave radiation anomalies that dominated in the summer MHW development (Figure 6b).
Furthermore, the anti-correlation between TCC and SSTA in the KOE region reflected the
shortwave radiation contribution to the MHWs in the region (Figure A2).

3.2.3. The Effect of Winter Warming

Summer MHWs in 2018, 2020, and 2021 developed upon abnormally large ML temper-
ature warming at the end of winter (1 March) (Figure 5b).To explore the effect of the winter
ocean warming, we examined the wintertime SSH variability and upper ocean temperature
anomalies during the MHW years (Figure 7). On average, the Kuroshio separates from
the coast at 35◦N and extends eastward following two quasi-stationary meanders with a
strong SSH gradient (Figure 1a,c). There were positive SSH anomalies in the KOE region in
2018, 2020, and 2021, with enhanced anticyclonic eddy activities (Figure 7). In 2020 and
2021, there were significant positive SSH anomalies near the southern boundary of the KOE
region, indicating a northward migration of the KE axis (Figure 7a). In addition, there was
a strong SSH trend in the KOE region after 2018, indicating heat accumulation in the KOE
region (Figure 8).
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Furthermore, the vertical profile of temperature anomalies in the KOE showed that
there was higher winter warming of the upper ocean in 2018, 2020, and 2021 (Figure 7b).
As winter warming persisted into spring and summer, they would have preconditioned
the MHWs in summer.

4. Discussion
4.1. Impact of Atmospheric Circulation System

Strong summer MHWs in 1999, 2008, 2012, and 2016 in the KOE region, the positive
shortwave radiation anomalies were prominent during summertime, associated with the
reduction in cloud cover (Figure 6). Further analysis found that the reduction of cloud cover
in the KOE was primarily explained by the anomalously strengthened North Pacific High
(NPH) system (Figure 9a), which suppressed the convective activity, manifested as positive
OLR and negative precipitation anomalies (Figure 9b,c). Similarly, Kuroda and Setou [19]
found that MHW in the Northwest Pacific in summer 2021 was related to air-sea heat
fluxes, and the northwestern shift of the NPH was an important factor. However, besides
the NPH system, some other factors were still worthy of consideration. For example, the
northward movement of the westerly jet induced warm atmospheric conditions [19]; the
Philippine-Japan teleconnection triggered by the SST-forced tropical Pacific anomaly led to
the great decay of cloud amounts near Japan [53]. All these factors can have some effect
on the KOE region, resulting in an anomalous increase in SST. The large-scale drivers of
atmospheric circulation systems in the KOE region are worth further attention.

4.2. Factors Affecting Upper Ocean Heat Content

The winter memory dominated MHWs (2018, 2020, and 2021) were closely associated
with the upper ocean heat content in the KOE region (Figure 7). Previous studies demon-
strated that the KE index represents the low-frequency variability of the KE system [33,54].
For example, KE had significant decadal variability between stable and unstable dynamic
states [32,33,54]. Specifically, the stable state exhibited a northward shift of KE and an
intensified recirculation gyre [54], with a significant decadal warming trend since 2018
(Figure 8), which is consistent with the increasing occurrences of MHWs in the KOE region.
The decadal modulation of the KE system was related to the basin-scale wind stress asso-
ciated with the Pacific Decadal Oscillation (PDO) [55], and the negative PDO phase can
lead the positive SSH anomalies by three years [54]. Influences from the ocean dynamic
processes on the KOE warming or cooling events, such as Rossby waves and North Pacific
oscillations, need to be further studied.

Another factor worth considering forced the northward shift of the KE axis was the
long-term global warming. The enhanced warming trend showed a synchronous change
with the subtropical WBCs. Wu et al. [20] proposed that the Kuroshio Current has shifted
poleward by about 0.8 ± 0.4◦ in the past century, which was associated with a regional
warming trend. Yang et al. [21] pointed out that the Kuroshio Current would strengthen
and shift poleward under global warming. In general, the northward migration of the KE
axis in recent years may be due to the superposition of internal decadal oscillations and
externally forced warming trends.

4.3. Biological Implications

MHWs in a region can cause stress for marine life. Mobile or migratory species may
move elsewhere, or deeper, to remain in their preferred temperature range. For lower mobil-
ity species (or life stages), or where MHW conditions are spatially extensive, declines in sur-
vival or performance have been reported from around the world [56]. Long-term changes
in the distribution of coastal species adjacent to the Kuroshio have been reported (e.g., [57]),
but less is known in the more offshore KOE region. This region is an important foraging
ground for a range of marine species, including marine mammals (e.g., [58]), presumably
exploiting the rich feeding environment created by the convergence of the warm and cold
currents. In turn, offshore fisheries have also used this region for many decades, and have
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long noted the relationship between SST and the abundance of the focal species, particularly
saury [59]. With the predicted increase in the frequency, duration, and intensity of MHWs,
an understanding of species responses to extremes can help anticipate and plan responses
to offset unwanted outcomes for species and fisheries.
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5. Conclusions

As the region with the largest SST variability in the North Pacific, the KOE has been
experiencing more intense MHWs over the past four decades. Particularly, the cumulative
intensity during boreal summer was the strongest, almost twice that of spring or winter.
In this study, we explored the summer MHWs in the KOE region and analyzed the seven
strongest summer MHWs based on cumulative intensities. We found that the MHWs
in 1999, 2008, 2012, and 2016 mainly initiated and reached their peak temperature in
summer, while in 2018, 2020, and 2021, MHWs in winter persisted, some intermittently, and
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continued to affect boreal summer. ML temperature budget analysis showed that MHWs in
1999, 2008, 2012, and 2016 were mainly driven by the air-sea heat flux due to the increased
shortwave radiation associated with the reduced cloud cover; MHWs in 2018, 2020, and
2021 were primarily contributed by the initial value of winter ML which was associated
with the anomalous KE axial migration and the decadal warming trend to produce positive
upper ocean heat content anomalies. A better understanding of the driving mechanism of
MHWs in the KOE region provides a reference for projecting MHWs in the region in future
climate change.
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To further investigate the drivers of some of the less strong MHW events in the KOE
region, the ML temperature budget analysis was calculated and shown in Figure A1. We
found that the summer MHWs in 1998 and 2013 were mostly attributed to air-sea heat flux
anomalies, whereas the summer MHWs in 2010 and 2011 were due to a mixed contribution
from winter memory and air-sea heat flux anomalies.
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Appendix B

To better clarify the driving role of TCC in severe SST/MHW, we further investigated
the relationship between TCC and SSTA in the KOE region. As shown in Figure A2, lower
TCC corresponded to stronger SSTA, with a correlation coefficient of −0.58.
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Appendix C

Table A1. List of English Abbreviations.

Abbreviation Full name

AVHRR Advanced Very High-Resolution Radiometer
AVISO Archiving, Validation, and Interpolation of Satellite Oceanographic
CC Correlation Coefficient
CMEMS Copernicus Marine Environment Monitoring Service
CPC CMAP Climate Prediction Center Merged Analysis of Precipitation
ENSO El Niño-Southern Oscillation
GODAS Global Ocean Data Analysis System
KE Kuroshio Extension
KOE Kuroshio-Oyashio Extension
MHW Marine heatwave
ML/MLD Mixed layer/Mixed layer depth

NCEP CFSR/CFSv2 National Centers for Environmental Prediction Climate Forecast
System Reanalysis and Climate Forecast System version 2

NOAA OI SST National Oceanic and Atmospheric Administration Optimum
Interpolated Sea Surface Temperature

NPH North Pacific High
OLR Outgoing longwave radiation
PIRATA Prediction and Research Moored Array in the Tropical Atlantic
PRE Precipitation
RMSE Root Mean Square Error
SLP Sea level pressure
SSH Sea surface height
SST Sea surface temperature
SSTA Sea surface temperature anomaly
T Temperature
TAO Tropical Atmosphere Ocean
TCC Total cloud cover
TRITON Triangle Trans-Ocean Buoy Network
WBCs West Boundary Currents
XBTs Expendable bathythermographs
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