Summer Marine Heatwaves in the Kuroshio-Oyashio Extension Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Satellite Observation Data
2.1.2. Reanalysis Data
2.2. MHW Definition
2.3. Model Verification
2.4. Mixed Layer Heat Budget
3. Results
3.1. MHWs in the KOE during 1982–2021
3.2. Mechanisms of MHWs
3.2.1. Heat Budget Analysis
3.2.2. The Effect of Air-Sea Heat Flux
3.2.3. The Effect of Winter Warming
4. Discussion
4.1. Impact of Atmospheric Circulation System
4.2. Factors Affecting Upper Ocean Heat Content
4.3. Biological Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Abbreviation | Full name |
---|---|
AVHRR | Advanced Very High-Resolution Radiometer |
AVISO | Archiving, Validation, and Interpolation of Satellite Oceanographic |
CC | Correlation Coefficient |
CMEMS | Copernicus Marine Environment Monitoring Service |
CPC CMAP | Climate Prediction Center Merged Analysis of Precipitation |
ENSO | El Niño-Southern Oscillation |
GODAS | Global Ocean Data Analysis System |
KE | Kuroshio Extension |
KOE | Kuroshio-Oyashio Extension |
MHW | Marine heatwave |
ML/MLD | Mixed layer/Mixed layer depth |
NCEP CFSR/CFSv2 | National Centers for Environmental Prediction Climate Forecast System Reanalysis and Climate Forecast System version 2 |
NOAA OI SST | National Oceanic and Atmospheric Administration Optimum Interpolated Sea Surface Temperature |
NPH | North Pacific High |
OLR | Outgoing longwave radiation |
PIRATA | Prediction and Research Moored Array in the Tropical Atlantic |
PRE | Precipitation |
RMSE | Root Mean Square Error |
SLP | Sea level pressure |
SSH | Sea surface height |
SST | Sea surface temperature |
SSTA | Sea surface temperature anomaly |
T | Temperature |
TAO | Tropical Atmosphere Ocean |
TCC | Total cloud cover |
TRITON | Triangle Trans-Ocean Buoy Network |
WBCs | West Boundary Currents |
XBTs | Expendable bathythermographs |
References
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.Q.; Yuan, W.; Gao, Y.Z. Arabian Peninsula-North Pacific Oscillation and its association with the Asian summer monsoon. Sci. China Ser. D. Earth Sci. 2008, 51, 1001–1012. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Sen Gupta, A.; Thomsen, M.; Benthuysen, J.A.; Hobday, A.J.; Smale, D.A. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 2020, 10, 19359. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, N.J.; Scannell, H.A.; Gupta, A.S.; Benthuysen, J.A.; Feng, M.; Oliver, E.C.J.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Hobday, A.J. A global assessment of marine heatwaves and their drivers. Nat. Commun. 2019, 10, 2624. [Google Scholar] [CrossRef]
- Gao, G.; Marin, M.; Feng, M.; Yin, B.; Yang, D.; Feng, X.; Ding, Y.; Song, D. Drivers of Marine Heatwaves in the East China Sea and the South Yellow Sea in Three Consecutive Summers During 2016–2018. J. Geophys. Res. Ocean. 2020, 125. [Google Scholar] [CrossRef]
- Bond, N.A.; Cronin, M.F.; Freeland, H.; Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 2015, 42, 3414–3420. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; De Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Cerrano, C. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Chang. Biol. 2010, 15, 1090–1103. [Google Scholar] [CrossRef]
- Genin, A.; Levy, L.; Sharon, G.; Raitsos, D.E.; Diamant, A. Rapid onsets of warming events trigger mass mortality of coral reef fish. Proc. Natl. Acad. Sci. USA 2020, 117, 25378–25385. [Google Scholar] [CrossRef] [PubMed]
- Caputi, N.; Kangas, M.; Chandrapavan, A.; Hart, A.; Lestang, S.D. Factors Affecting the Recovery of Invertebrate Stocks From the 2011 Western Australian Extreme Marine Heatwave. Front. Mar. Sci. 2019, 6, 484. [Google Scholar] [CrossRef] [Green Version]
- Barbeaux, S.J.; Holsman, K.; Zador, S. Marine Heatwave Stress Test of Ecosystem-Based Fisheries Management in the Gulf of Alaska Pacific Cod Fishery. Front. Mar. Sci. 2020, 7, 703. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N.; Perkins-Kirkpatrick, S.E. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 2017, 8, 16101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, E.C.J.; Lago, V.; Hobday, A.J.; Holbrook, N.J.; Ling, S.D.; Mundy, C.N. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 2018, 161, 116–130. [Google Scholar] [CrossRef]
- Scannell, H.A.; Pershing, A.J.; Alexander, M.A.; Thomas, A.C.; Mills, K.E. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 2016, 43, 2069–2076. [Google Scholar] [CrossRef] [Green Version]
- Manta, G.; Mello, S.D.; Trinchin, R.; Badagian, J.; Barreiro, M. The 2017 Record Marine Heatwave in the Southwestern Atlantic Shelf. Geophys. Res. Lett. 2018, 45, 12449–12456. [Google Scholar] [CrossRef]
- Miyama, T.; Minobe, S.; Goto, H. Marine Heatwave of Sea Surface Temperature of the Oyashio Region in Summer in 2010–2016. Front. Mar. Sci. 2021, 7, 576240. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive Marine Heatwaves at the Sea Surface in the Northwestern Pacific Ocean in Summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Wu, L.; Cai, W.; Zhang, L.; Nakamura, H.; Timmermann, A.; Joyce, T.M.; Mcphaden, M.J.; Alexander, M.A.; Qiu, B.; Visbeck, M. Enhanced Warming over the Global Subtropical Western Boundary Currents. Nat. Clim. Chang. 2012, 2, 161–166. [Google Scholar] [CrossRef]
- Yang, H.; Lohmann, G.; Wei, W.; Dima, M.; Ionita, M.; Liu, J. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. 2016, 121, 4928–4945. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, I. Hydrographic Structure and Variability in the Kuroshio-Oyashio Transition Area. J. Oceanogr. 2003, 59, 389–402. [Google Scholar] [CrossRef]
- Kwon, Y.O.; Alexander, M.A.; Bond, N.A.; Frankignoul, C.; Thompson, L.A. Role of the Gulf Stream and Kuroshio–Oyashio Systems in Large-Scale Atmosphere–Ocean Interaction: A Review. J. Clim. 2010, 23, 3249–3281. [Google Scholar] [CrossRef]
- Taguchi, B.; Xie, S.P.; Schneider, N.; Nonaka, M.; Sasaki, H.; Sasai, Y. Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast. J. Clim. 2007, 20, 2357–2377. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wang, Y.; Liu, Z.; McWilliams, J.C.; Gan, J. Insight into the Dynamics of the Radiating Internal Tide Associated with the Kuroshio Current. J. Geophys. Res. Ocean. 2021, 126, e2020JC017018. [Google Scholar] [CrossRef]
- Yasuda, I. North Pacific Intermediate Water: Progress in SAGE (SubArctic Gyre Experiment) and Related Projects. J. Oceanogr. 2004, 60, 385–395. [Google Scholar] [CrossRef]
- Noto, M. Population decline of the Japanese sardine, Sardinops melanostictus, in relation to sea surface temperature in the Kuroshio Extension. Can. J. Fish. 1999, 56, 973–983. [Google Scholar] [CrossRef]
- Noto, M.; Yasuda, I. Empirical biomass model for the Japanese sardine, Sardinops melanostictus, with sea surface temperature in the Kuroshio Extension. Fish. Oceanogr. 2010, 12, 1–9. [Google Scholar] [CrossRef]
- Yasuda, I.; Watanabe, Y. On the relationship between the Oyashio front and saury fishing grounds in the north-western Pacific: A forecasting method for fishing ground locations. Fish. Oceanogr. 1994, 3, 172–181. [Google Scholar] [CrossRef]
- Yasuda, I.; Kitagawa, D. Locations of early fishing grounds of saury in the northwestern Pacific. Fish. Oceanogr. 2010, 5, 63–69. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bladé, I.; Newman, M.; Lanzante, J.R.; Lau, N.C.; Scott, J.D. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 2002, 15, 2205–2231. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales. J. Phys. Oceanogr. 2005, 35, 2090–2103. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S.; Schneider, N.; Taguchi, B. A Coupled Decadal Prediction of the Dynamic State of the Kuroshio Extension System. J. Clim. 2014, 27, 1751–1764. [Google Scholar] [CrossRef] [Green Version]
- Vivier, F.; Kelly, K.A.; Thompson, L.A. Heat Budget in the Kuroshio Extension Region: 1993–99. J. Phys. Oceanogr. 2002, 32, 3436–3454. [Google Scholar] [CrossRef]
- Thomas, L.N.; Lee, C.M. Intensification of Ocean Fronts by Down-Front Winds. J. Phys. Oceanogr. 2005, 35, 1086–1102. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W.Q. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Ducet, N.; Traon, P.Y.L.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Ocean. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bull. Amer. Meteor. Soc. 1996, 77, 1275–1277. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Behringer, D.W.; Yan, X. Evaluation of the Global Ocean Data Assimilation System at NCEP: The Pacific Ocean. In Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting; Washington State Convention and Trade Center: Seattle, WA, USA, 2004; Available online: https://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm (accessed on 17 June 2022).
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-y.; Iredell, M. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Qiu, B.; Kelly, K.A. Upper-Ocean Heat Balance in the Kuroshio Extension Region. J. Phys. Oceanogr. 1993, 23, 2027–2041. [Google Scholar] [CrossRef]
- Feng, M.; Hacker, P.; Lukas, R. Upper ocean heat and salt balances in response to a westerly wind burst in the western equatorial Pacific during TOGA COARE. J. Geophys. Res. Ocean. 1998, 103, 10289–10311. [Google Scholar] [CrossRef]
- Feng, M.; Biastoch, A.; Boning, C.W.; Caputi, N.; Meyers, G. Seasonal and interannual variations of upper ocean heat balance off the west coast of Australia. J. Geophys. Res. Ocean. 2008, 113, C12025. [Google Scholar] [CrossRef]
- Amaya, D.J.; Miller, A.J.; Xie, S.P.; Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 2020, 11, 1903. [Google Scholar] [CrossRef] [PubMed]
- Foltz, G.R.; Vialard, J.; Kumar, B.P.; Mcphaden, M.J. Seasonal Mixed Layer Heat Balance of the Southwestern Tropical Indian Ocean. J. Clim. 2010, 23, 947–965. [Google Scholar] [CrossRef] [Green Version]
- Paulson, C.A.; Simpson, J.J. Irradiance Measurements in the Upper Ocean. J. Phys. Oceanogr. 1977, 7, 952–956. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Gupta, A.S.; Hobday, A.J. Longer and More Frequent Marine Heatwaves Over the Past Century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Oliver, E.C.J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 2019, 53, 1653–1659. [Google Scholar] [CrossRef]
- Marin, M.; Feng, M.; Phillips, H.E.; Bindoff, N.L. A global, multi-product analysis of coastal marine heatwaves: Distribution, characteristics and long-term trends. J. Geophys. Res. Ocean. 2021, 126, e2020JC016708. [Google Scholar] [CrossRef]
- Ronca, R.E.; Battisti, D.S. Anomalous Sea Surface Temperatures and Local Air–Sea Energy Exchange on Intraannual Timescales in the Northeastern Subtropical Pacific. J. Clim. 1997, 10, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Nitta, T. Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. J. Meteorol. Soc. Jpn. 1987, 65, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Chen, S.; Schneider, N.; Oka, E.; Sugimoto, S. On Reset of the Wind-Forced Decadal Kuroshio Extension Variability in Late 2017. J. Clim. 2020, 33, 1–49. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 2019, 9, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Taino, S.; Haraguchi, H.; Prendergast, G.; Hiraoka, M. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol. Evol. 2012, 2, 2854–2865. [Google Scholar] [CrossRef]
- Yu, K.; Makoto, O.; Tomio, M. Spatial patterns of distribution, abundance, and species diversity of small odontocetes estimated using density surface modeling with line transect sampling. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2017, 140, 151–162. [Google Scholar] [CrossRef]
- Tian, Y.; Akamine, T.; Suda, M. Modeling the influence of oceanic-climatic changes on the dynamics of Pacific saury in the northwestern Pacific using a life cycle model. Fish. Oceanogr. 2004, 13, 125–137. [Google Scholar] [CrossRef]
Data Type | Data Name | Periods | Spatial | Time | Variable |
---|---|---|---|---|---|
Satellite–observation data | NOAA OISST | 1982–2021 | 0.25° × 0.25° | Daily; Monthly | SST |
CMEMS data | 1993–2021 | 0.25° × 0.25° | Daily | SSH; u; v | |
NOAA interpolated OLR | 1982–2021 | 2.5° × 2.5° | Monthly | OLR | |
CPC CMAP | 1982–2021 | 2.5° × 2.5° | Monthly | PRE | |
Reanalysis data | NCEP GODAS | 1982–2021 | 1° × 0.33° | Pentad; Monthly | T; u; v; w; Heat flux; MLD |
NCEP CFSR/CFSv2 | 1982–2021 | 0.5° × 0.5° | Daily; Monthly | SLP; TCC; Heat flux |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Feng, M.; Xu, Z.; Yin, B.; Hobday, A.J. Summer Marine Heatwaves in the Kuroshio-Oyashio Extension Region. Remote Sens. 2022, 14, 2980. https://doi.org/10.3390/rs14132980
Du Y, Feng M, Xu Z, Yin B, Hobday AJ. Summer Marine Heatwaves in the Kuroshio-Oyashio Extension Region. Remote Sensing. 2022; 14(13):2980. https://doi.org/10.3390/rs14132980
Chicago/Turabian StyleDu, Yanzhen, Ming Feng, Zhenhua Xu, Baoshu Yin, and Alistair J. Hobday. 2022. "Summer Marine Heatwaves in the Kuroshio-Oyashio Extension Region" Remote Sensing 14, no. 13: 2980. https://doi.org/10.3390/rs14132980
APA StyleDu, Y., Feng, M., Xu, Z., Yin, B., & Hobday, A. J. (2022). Summer Marine Heatwaves in the Kuroshio-Oyashio Extension Region. Remote Sensing, 14(13), 2980. https://doi.org/10.3390/rs14132980