Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = head space solid phase microextraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2958 KB  
Article
Pomegranate Peel as a Sustainable Additive for Baijiu Fermentation: Physicochemical and Flavor Analysis with Process Optimization
by Longwen Wang, Guida Zhu, Na Li, Zhiheng Wang, Yi Ji, Chen Shen, Jing Yu and Ping Song
Molecules 2025, 30(8), 1800; https://doi.org/10.3390/molecules30081800 - 17 Apr 2025
Viewed by 1096
Abstract
Rice hulls, a traditional ingredient in Chinese light-flavor Baijiu, contribute to bran and furfural flavors but may adversely affect the aroma and taste. This study explores fresh pomegranate peel as a sustainable alternative to rice hulls in Baijiu fermentation. The flavor profiles in [...] Read more.
Rice hulls, a traditional ingredient in Chinese light-flavor Baijiu, contribute to bran and furfural flavors but may adversely affect the aroma and taste. This study explores fresh pomegranate peel as a sustainable alternative to rice hulls in Baijiu fermentation. The flavor profiles in jiupei and Baijiu were interpreted by employing head-space solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), while their physicochemical characteristics were systematically assessed. Statistical evaluations, such as correlation analysis and cluster analysis, were conducted to interpret the data. The results showed that compared with rice hull, pomegranate peel reduced furfural content in jiupei by 90%, increased the alcohol distillation rate (alcohol distillation rate: this refers to the weight percentage of 50% alcohol by volume (ABV) Baijiu produced from a unit amount of raw material under standard atmospheric pressure at 20 °C (also known as Baijiu yield)) by 30%, enhanced antioxidant capacity by 24.38%, and improved starch efficiency by 3%. Notably, the Baijiu complied with the premium Baijiu standards specified in the Chinese National Standard for light-flavor Baijiu. Additionally, under the experimental conditions of this study, the optimal Baijiu yield (optimal Baijiu yield: the maximum achievable Baijiu production under defined constraints (e.g., energy input, time, cost)) (48% ± 3.41%) correlated with the pomegranate peel particle size. This research highlights the viability of using pomegranate peel as a sustainable and environmentally friendly adjunct in the fermentation of light-flavor Baijiu, offering valuable perspectives for exploring alternative brewing ingredients. Full article
Show Figures

Figure 1

16 pages, 2107 KB  
Article
Exploring Italian Autochthonous Punica granatum L. Accessions: Pomological, Physicochemical, and Aromatic Investigations
by Deborah Beghè, Martina Cirlini, Elisa Beneventi, Chiara Dall’Asta, Ilaria Marchioni and Raffaella Petruccelli
Plants 2024, 13(18), 2558; https://doi.org/10.3390/plants13182558 - 12 Sep 2024
Cited by 1 | Viewed by 981
Abstract
Autochthonous Italian pomegranate accessions are still underexplored, although they could be an important resource for fresh consumption, processing, and nutraceutical uses. Therefore, it is necessary to characterize the local germplasm to identify genotypes with desirable traits. In this study, six old Italian pomegranate [...] Read more.
Autochthonous Italian pomegranate accessions are still underexplored, although they could be an important resource for fresh consumption, processing, and nutraceutical uses. Therefore, it is necessary to characterize the local germplasm to identify genotypes with desirable traits. In this study, six old Italian pomegranate landraces and a commercial cultivar (Dente di Cavallo) were investigated, evaluating their fruit pomological parameters, physicochemical (TSS, pH, TA, and color) characteristics, sugar content, and aromatic profiles (HeadSpace Solid-Phase MicroExtraction (HS-SPME)) coupled with Gas Chromatographyass Spectrometry (GC–MS) of pomegranate juices. Significant differences were observed in the size and weight of the seed and fruits (127.50–525.1 g), as well as the sugar content (100–133.6 gL−1), the sweetness (12.9–17.6 °Brix), and the aroma profiles. Over 56 volatile compounds, predominantly alcohols (56%), aldehydes (24%), and terpenes (9%), were simultaneously quantified. Large variability among the genotypes was also statistically confirmed. The results indicate a strong potential for commercial exploitation of this germplasm, both as fresh and processed fruit, and highlight its versatility for diverse applications. The genetic diversity of the autochthonous pomegranate accessions represents a precious heritage to be preserved and enhanced. This work represents a preliminary step toward a more comprehensive characterization and qualitative valorization of the Italian pomegranate germplasm. Full article
Show Figures

Figure 1

11 pages, 884 KB  
Article
Olfactory Response of Sitophilus zeamais Adults to Odours of Semolina Pasta and Semolina Pasta Enriched with Different Amounts of Acheta domesticus Powder
by Pasquale Trematerra, Marco Colacci, Maria Cristina Messia, Maria Carmela Trivisonno, Anna Reale, Floriana Boscaino and Giacinto Salvatore Germinara
Insects 2024, 15(9), 634; https://doi.org/10.3390/insects15090634 - 25 Aug 2024
Cited by 2 | Viewed by 1457
Abstract
The behavioural response of adult maize weevil, Sitophilus zeamais, to different types of semolina pasta enriched or not enriched with increasing proportions (5%, 10%, and 15%) of house cricket (Acheta domesticus) powder was investigated in olfactometer arena bioassays by using [...] Read more.
The behavioural response of adult maize weevil, Sitophilus zeamais, to different types of semolina pasta enriched or not enriched with increasing proportions (5%, 10%, and 15%) of house cricket (Acheta domesticus) powder was investigated in olfactometer arena bioassays by using trap devices. In the five-choice behavioural bioassays, the number of S. zeamais adults attracted to 100% durum wheat semolina pasta was significantly higher than those attracted to the other pasta types enriched with A. domesticus powder. In the two-choice behavioural bioassays, the Response Index for each pasta type was positive and significant. However, although not significant, there was a progressive reduction in the Response Index as the cricket powder content increased. In similar experiments, there were no significant differences between cricket powder alone and the control in the number of attracted S. zeamais, indicating a neutral effect towards insects. These observations suggest that the lower attractiveness of pasta enriched with house cricket powder is mainly due to the masking of host food odours. Solid-phase microextraction coupled to gas chromatography–mass spectroscopy identified a total of 18 compounds in the head-space samples of the different types of pasta, highlighting differences in volatile composition. Some volatile compounds were only present in the pasta produced with cricket powder. In particular, 1-octen-3-ol and phenol were present in the samples containing 5%, 10%, or 15% cricket powder; pentanal, benzaldehyde, and dimethyl disulphide were present in samples containing 10% or 15% cricket powder; and 2,5-dimethyl-pyrazine was present in the sample containing 15% cricket powder. Further investigation with individual compounds and mixtures is needed to define the chemical basis of the differences in the insect olfactory preference observed in this study. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

22 pages, 4347 KB  
Article
Identification of Volatile Molecules and Bioactivity of Gruyt Craft Beer Enriched with Citrus aurantium var. dulcis L. Essential Oil
by Cosimo Taiti, Antonella Di Sotto, Giovanni Stefano, Ester Percaccio, Matteo Iannone, Andrea Marianelli and Stefania Garzoli
Int. J. Mol. Sci. 2024, 25(1), 350; https://doi.org/10.3390/ijms25010350 - 26 Dec 2023
Cited by 2 | Viewed by 2463
Abstract
In this work, for the first time, a gruyt beer and the same one after the addition of Citrus aurantium essential oil (AEO), were investigated to determine the composition of the volatile fraction. The applied analytical techniques, such as Head Space/Solid Phase Microextraction-Gas [...] Read more.
In this work, for the first time, a gruyt beer and the same one after the addition of Citrus aurantium essential oil (AEO), were investigated to determine the composition of the volatile fraction. The applied analytical techniques, such as Head Space/Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS/SPME-GC-MS) and Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS), allowed us to identify the content of volatile organic compounds (VOCs). From the comparison between the two beer samples, it showed that the one after the addition of AEO was particularly richened in limonene and a series of minor terpene compounds. AEO was also characterized by GC/MS analysis and the results showed that limonene reached 95%. Confocal microscopy was used to look at riboflavin autofluorescence in yeast cells. It was found that beer with AEO had twice as much fluorescence intensity as the control. A spectrophotometric analysis of total polyphenols, tannins, and flavonoids, and a bioactivity screening, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azinobis-(3-Ethylbenzthiazolin-6-Sulfonic Acid) (ABTS) radical scavenger, chelating, reducing, antiglycative ones, were also carried out. Moreover, the tolerability of the tested samples in human H69 cholangiocytes and the cytoprotection towards the tert-butyl hydroperoxide (tBOOH)-induced oxidative damage were evaluated. Under our experimental conditions, the beers were found to be able to scavenge DPPH and ABTS radicals and chelate iron ions, despite weak antiglycative and reducing properties. The tested samples did not affect the viability of H69 cholangiocytes up to the highest concentrations; moreover, no signs of cytoprotection against the damage induced by tBOOH were highlighted. Adding AEO to beer resulted in a moderate enhancement of its DPPH scavenging and chelating abilities, without improvements in the other assays. Conversely, AEO and its major compound limonene were ineffective when assessed at the concentrations added to beer. This evidence suggests that the addition of AEO may enhance the organoleptic features of the beer and slightly potentiate some of its bioactivities. Full article
(This article belongs to the Special Issue Investigation of Natural Products as Sources of Bioactive Molecules)
Show Figures

Figure 1

15 pages, 3869 KB  
Article
Method Comparison for the Identification and Characterization of Odorants from Scots Pine (Pinus sylvestris L.) and Oriented Strand Boards (OSB) Made Thereof by GC-MS and GC-FID/O Using Different Headspace Techniques
by Valentin Schierer, Cornelia Rieder-Gradinger and Erwin Rosenberg
Chemosensors 2023, 11(10), 543; https://doi.org/10.3390/chemosensors11100543 - 19 Oct 2023
Cited by 1 | Viewed by 2727
Abstract
Volatile organic compounds (VOCs) from wood and wood composites are important contributors to odor profiles of indoor environments and can significantly influence human health and well-being. GC-MS/FID and gas chromatography (GC) with olfactometric detection (GC-O) are employed for the identification and characterization of [...] Read more.
Volatile organic compounds (VOCs) from wood and wood composites are important contributors to odor profiles of indoor environments and can significantly influence human health and well-being. GC-MS/FID and gas chromatography (GC) with olfactometric detection (GC-O) are employed for the identification and characterization of odorants. Four different sample preparation methods are evaluated on wood strands and isocyanate adhesive–based oriented strand boards (OSBs) made from Pinus sylvestris L.: among these, dynamic headspace extraction thermal desorption ((dynamic) HS-TD), head space solid phase microextraction (HS-SPME), head space solid phase microextraction Arrow (HS-SPME Arrow), and liquid injection of a CH2Cl2 solvent extract. The olfactometric investigation revealed over 30 odor-active substances of cyclic and acyclic monoterpene, monoterpenoid ketone, monoterpenoid aldehyde, monoterpenoid alcohol, monoterpenoid ester, aliphatic aldehyde, alcohol, and acid and phenolic chemistry. Compared to liquid injection, (dynamic) HS-TD was found to result in a similar number of odorants (20 vs. 24), whereas HS SPME Arrow shows good performance with minimal instrumental effort, notably for monoterpene and aldehyde compounds. Native wood vs. OSB showed high concentrations of saturated and unsaturated aldehydes for the wood board sample. These findings demonstrate the capability of headspace methods for odorant detection and their suitability for standardization towards a database for wood and wood composites. Full article
Show Figures

Graphical abstract

14 pages, 2913 KB  
Review
Solid-Phase Microextraction Techniques and Application in Food and Horticultural Crops
by Snezana Agatonovic-Kustrin, Vladimir Gegechkori, Tamara Kobakhidze and David Morton
Molecules 2023, 28(19), 6880; https://doi.org/10.3390/molecules28196880 - 29 Sep 2023
Cited by 18 | Viewed by 3981
Abstract
Solid-phase microextraction (SPME) is a sample preparation technique which utilizes small amounts of an extraction phase for the extraction of target analytes from investigated sample matrices. Its simplicity of use, relatively short sample processing time, and fiber reusability have made SPME an attractive [...] Read more.
Solid-phase microextraction (SPME) is a sample preparation technique which utilizes small amounts of an extraction phase for the extraction of target analytes from investigated sample matrices. Its simplicity of use, relatively short sample processing time, and fiber reusability have made SPME an attractive choice for many analytical applications. SPME has been widely applied to the sampling and analysis of environmental, food, aromatic, metallic, forensic, and pharmaceutical samples. Solid phase microextraction is used in horticultural crops, for example, to determine water and soil contaminants (pesticides, alcohols, phenols, amines, herbicides, etc.). SPME is also used in the food industry to separate biologically active substances in food products for various purposes, for example, disease prevention, determining the smell of food products, and analyzing tastes. SPME has been applied to forensic analysis to determine the alcohol concentration in blood and that of sugar in urine. This method has also been widely used in pharmaceutical analysis. It is a solvent-free sample preparation technique that integrates sampling, isolation, and concentration. This review focuses on recent work on the use of SPME techniques in the analysis of food and horticultural crops. Full article
Show Figures

Figure 1

13 pages, 1606 KB  
Article
Solvent-Free Determination of Selected Polycyclic Aromatic Hydrocarbons in Plant Material Used for Food Supplements Preparation: Optimization of a Solid Phase Microextraction Method
by Barbara Benedetti, Marina Di Carro, Chiara Scapuzzi and Emanuele Magi
Molecules 2023, 28(16), 5937; https://doi.org/10.3390/molecules28165937 - 8 Aug 2023
Cited by 3 | Viewed by 1743
Abstract
The exploitation of waste and by-products in various applications is becoming a cornerstone of the circular economy. A range of biomasses can be employed to produce food supplements. An example is a particular extract obtained from plant buds (rich in bioactive molecules), which [...] Read more.
The exploitation of waste and by-products in various applications is becoming a cornerstone of the circular economy. A range of biomasses can be employed to produce food supplements. An example is a particular extract obtained from plant buds (rich in bioactive molecules), which can be easily retrieved from cities’ pruning. In order to safely use this material, its possible contamination by organic pollutants needs to be estimated. A green and simple method to detect priority polycyclic aromatic hydrocarbons (PAHs) in bud samples by head space solid phase microextraction coupled to GC-MS was developed. This strategy, optimized through experimental design and response surface methodology, requires a minimal sample pre-treatment and negligible solvent consumption. The final method was found to be accurate and sensitive for PAHs with mass up to 228 Da. For these analytes, satisfactory figures of merit were achieved, with detection limits in the range 1–4 ng g−1, good inter-day precision (relative standard deviation in the range 4–11%), and satisfactory accuracy (88–105%), along with specificity guaranteed by the selected ion monitoring detection. The method was applied to bud samples coming from differently polluted areas, thus helping in estimating the safety of their use for the production of food supplements. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

26 pages, 2719 KB  
Article
Volatile Characterization of Lychee Plant Tissues (Litchi chinensis) and the Effect of Key Compounds on the Behavior of the Lychee Erinose Mite (Aceria litchii)
by Livia M. S. Ataide, Nurhayat Tabanca, Maria A. Canon, Elena Q. Schnell, Teresa I. Narvaez, Kevin R. Cloonan, Paul E. Kendra, Daniel Carrillo and Alexandra M. Revynthi
Biomolecules 2023, 13(6), 933; https://doi.org/10.3390/biom13060933 - 2 Jun 2023
Cited by 5 | Viewed by 3112
Abstract
Herbivore-Induced Plant Volatiles (HIPVs) are volatile signals emitted by plants to deter herbivores and attract their natural enemies. To date, it is unknown how lychee plants, Litchi chinensis, respond to the induction of leaf galls (erinea) caused by the lychee erinose mite (LEM), [...] Read more.
Herbivore-Induced Plant Volatiles (HIPVs) are volatile signals emitted by plants to deter herbivores and attract their natural enemies. To date, it is unknown how lychee plants, Litchi chinensis, respond to the induction of leaf galls (erinea) caused by the lychee erinose mite (LEM), Aceria litchii. Aiming to reveal the role of HIPVs in this plant-mite interaction, we investigated changes in the volatile profile of lychee plants infested by LEM and their role on LEM preferences. The volatile profile of uninfested (flower buds, fruit, leaves and new leaf shoots) and infested plant tissue were characterized under different levels of LEM infestation. Volatiles were collected using head-space-solid phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analyses. Fifty-eight volatiles, including terpenoids, alcohols, aldehydes, alkanes, esters, and ketones classes were identified. Using dual-choice bioassays, we investigated the preference of LEM to uninfested plant tissues and to the six most abundant plant volatiles identified. Uninfested new leaf shoots were the most attractive plant tissues to LEM and LEM attraction or repellence to volatiles were mostly influenced by compound concentration. We discuss possible applications of our findings in agricultural settings. Full article
(This article belongs to the Topic Advances in Chemical Ecology)
Show Figures

Figure 1

17 pages, 2109 KB  
Article
Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS
by Jiyuan Xu, Ying Zhang, Fei Yan, Yu Tang, Bo Yu, Bin Chen, Lirong Lu, Liren Yuan, Zhihua Wu and Hongbing Chen
Foods 2023, 12(1), 146; https://doi.org/10.3390/foods12010146 - 27 Dec 2022
Cited by 56 | Viewed by 5080
Abstract
Compared with spring tea, summer tea has the advantages of economy and quantity. However, research on the aroma characteristics of summer tea is currently limited. In this study, summer fresh tea leaves (castanopsis. sinensis, cv. Fuliangzhong) (FTLs) were processed intoblack tea [...] Read more.
Compared with spring tea, summer tea has the advantages of economy and quantity. However, research on the aroma characteristics of summer tea is currently limited. In this study, summer fresh tea leaves (castanopsis. sinensis, cv. Fuliangzhong) (FTLs) were processed intoblack tea (BT) and green tea (GT). The changes in the volatile compounds during the tea processing were quantified using gas chromatography-ion mobility spectrometry (GC-IMS) and head space-solid phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), and then analyzed on the basis of relative odor activity value (ROAV). Results showed low amounts of flavor compounds, such as linalool oxides, geraniol, and sulcatone, were found in FTLs, but after processing, high amounts of the same in BT and GT. Summer BT and GT contained characteristic compounds similar to spring tea, including linalool, geraniol, (E,E)-2,4-decdienal, β-ionone, methyl salicylate, geranyl acetone, and decanal. All these compounds have high content and ROAV values, which give the same flavor to summer teas as spring tea. This study confirmed that summer fresh tea leaves were suitable to produce black and green tea with good flavor. Monitoring changes in aroma compounds by GC-IMS coupled with GC-MS, the quality of summer tea is expected to be promoted towards the quality of spring tea by improving processing methods for valuable-tea production. Full article
(This article belongs to the Special Issue Sensory and Flavor Analysis of Foods and Their Volatile Profile)
Show Figures

Figure 1

10 pages, 1105 KB  
Article
Comparative Evaluation of Secreted Plant Carotenoid Cleavage Dioxygenase 1 (CCD1) Enzymes in Saccharomyces cerevisiae
by John J. B. Timmins, Heinrich Kroukamp, Roy S. K. Walker, Isak S. Pretorius and Ian T. Paulsen
Fermentation 2022, 8(8), 395; https://doi.org/10.3390/fermentation8080395 - 15 Aug 2022
Cited by 4 | Viewed by 3075
Abstract
Enabling technologies in synthetic biology now present the opportunity to engineer wine yeast for enhanced novel aromas. In doing so, improved wine products will increase the desirability of wine for the consumer and add value to the winemaker. The action of the enzyme [...] Read more.
Enabling technologies in synthetic biology now present the opportunity to engineer wine yeast for enhanced novel aromas. In doing so, improved wine products will increase the desirability of wine for the consumer and add value to the winemaker. The action of the enzyme carotenoid cleavage dioxygenase 1 (CCD1) on β-carotene to produce β-ionone is of interest to improve the aroma and flavour of the wine. Engineering the yeast, Saccharomyces cerevisiae, to produce higher concentrations of CCD1 in grape-must presents an opportunity to increase the levels of this volatile organic compound, thus enhancing the organoleptic properties of wine. To this end, four phylogenetically diverse plant CCD1 genes were synthesised with a secretion signal peptide and transformed into S. cerevisiae. The relative ability of each enzyme secreted into the yeast supernatant to cleave the deep orange C40 β-carotene was determined by spectrophotometry; furthermore, the by-product of such cleavage, the highly aromatic C13 β-ionone, was assessed by head-space solid-phase micro-extraction, with analysis and detection by GCMS. Reduction in β-carotene levels and release of β-ionone from the supernatant were validated by LCMS detection of CCD1. These experiments demonstrated that expression in yeast of the CCD1s derived from Petunia hybrida and Vitis vinifera and their subsequent secretion into the medium provided superior efficacy in both β-carotene reduction and β-ionone liberation. We anticipate this knowledge being of benefit to future winemakers in producing a vinous product with enhanced organoleptic properties. Full article
(This article belongs to the Special Issue Wine Microbiology)
Show Figures

Figure 1

14 pages, 1188 KB  
Article
Analysis of VOCs in Urine Samples Directed towards of Bladder Cancer Detection
by Tomasz Ligor, Przemysław Adamczyk, Tomasz Kowalkowski, Ileana Andreea Ratiu, Anna Wenda-Piesik and Bogusław Buszewski
Molecules 2022, 27(15), 5023; https://doi.org/10.3390/molecules27155023 - 7 Aug 2022
Cited by 22 | Viewed by 3718
Abstract
Bladder cancer is one of most common types of cancer diagnosed in the genitourinary tract. Typical tests are costly and characterized by low sensitivity, which contributes to a growing interest in volatile biomarkers. Head space solid phase microextraction (SPME) was applied for the [...] Read more.
Bladder cancer is one of most common types of cancer diagnosed in the genitourinary tract. Typical tests are costly and characterized by low sensitivity, which contributes to a growing interest in volatile biomarkers. Head space solid phase microextraction (SPME) was applied for the extraction of volatile organic compounds from urine samples, and gas chromatography time of flight mass spectrometry (GC×GC TOF MS) was used for the separation and detection of urinary volatiles. A cohort of 40 adult patients with bladder cancer and 57 healthy persons was recruited. Different VOC profiles were obtained for urine samples taken from each group. Twelvecompounds were found only in the samples from theBC group.The proposed candidate biomarkers are butyrolactone; 2-methoxyphenol; 3-methoxy-5-methylphenol; 1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)-2-buten-1-one; nootkatone and 1-(2,6,6-trimethyl-1-cyclohexenyl)-2-buten-1-one.Since most of the studies published in the field are proving the potential of VOCs detected in urine samples for the screening and discrimination of patients with bladder cancer from healthy, but rarely presenting the identity of proposed biomarkers, our study represents a novel approach. Full article
Show Figures

Figure 1

16 pages, 818 KB  
Article
Preliminary Evaluation of the Use of Thermally-Dried Immobilized Kefir Cells in Low Alcohol Winemaking
by Anastasios Nikolaou, Georgios Sgouros, Valentini Santarmaki, Gregoria Mitropoulou and Yiannis Kourkoutas
Appl. Sci. 2022, 12(12), 6176; https://doi.org/10.3390/app12126176 - 17 Jun 2022
Cited by 7 | Viewed by 1890
Abstract
Low alcohol wines (≤10.5% vol) are novel products that have gradually been gaining the consumers’ and market’s interest over the last decade. Taking into account the technological properties of immobilized cell systems alongside with the commercial need for dry cultures, the aim of [...] Read more.
Low alcohol wines (≤10.5% vol) are novel products that have gradually been gaining the consumers’ and market’s interest over the last decade. Taking into account the technological properties of immobilized cell systems alongside with the commercial need for dry cultures, the aim of the present study was to assess the suitability of thermally-dried immobilized kefir cells on DCM, apples pieces, and grape skins in low alcohol wine production. Storage of thermally-dried kefir culture in various temperatures (−18, 5, and 20 °C) resulted in high viability rates for immobilized cells (up to 93% for yeasts/molds immobilized on grape skins and stored at −18 °C for 6 months). Fermentation activity was maintained after storage in all cases, while high operational stability was confirmed in repeated batch fermentations for a period of 6 months. Principal Component Analysis (PCA) revealed that the fermentation temperature rather than the state of kefir culture affected significantly volatiles detected by Head Space Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry analysis. Notably, all new products were of high quality and approved by the sensory panel. Full article
(This article belongs to the Special Issue New Frontiers in Wine Sciences)
Show Figures

Figure 1

14 pages, 1359 KB  
Article
The Effect of Ozone Treatment on Metabolite Profile of Germinating Barley
by Xue Dong, Litao Sun, Manjree Agarwal, Garth Maker, Yitao Han, Xiangyang Yu and Yonglin Ren
Foods 2022, 11(9), 1211; https://doi.org/10.3390/foods11091211 - 21 Apr 2022
Cited by 9 | Viewed by 2704
Abstract
Ozone is widely used to control pests in grain and impacts seed germination, a crucial stage in crop establishment which involves metabolic alterations. In this study, dormancy was overcome through after-ripening (AR) in dry barley seed storage of more than 4 weeks; alternatively, [...] Read more.
Ozone is widely used to control pests in grain and impacts seed germination, a crucial stage in crop establishment which involves metabolic alterations. In this study, dormancy was overcome through after-ripening (AR) in dry barley seed storage of more than 4 weeks; alternatively, a 15-min ozone treatment could break the dormancy of barley immediately after harvest, with accelerated germination efficiency remaining around 96% until 4 weeks. Headspace solid-phase microextraction (HS-SPME) and liquid absorption coupled with gas chromatography mass spectrometry (GC-MS) were utilized for metabolite profiling of 2-, 4- and 7-day germinating seeds. Metabolic changes during barley germination are reflected by time-dependent characteristics. Alcohols, fatty acids, and ketones were major contributors to time-driven changes during germination. In addition, greater fatty acids were released at the early germination stage when subjected to ozone treatment. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

21 pages, 4107 KB  
Article
An Integrative Volatile Terpenoid Profiling and Transcriptomics Analysis in Hoya cagayanensis, Hoya lacunosa and Hoya coriacea (Apocynaceae, Marsdenieae)
by Syazwani Basir, Muhamad Afiq Akbar, Noraini Talip, Syarul Nataqain Baharum and Hamidun Bunawan
Horticulturae 2022, 8(3), 224; https://doi.org/10.3390/horticulturae8030224 - 4 Mar 2022
Cited by 4 | Viewed by 4011
Abstract
Hoya’s R.Br. attractive flower shapes and unique scents make it suitable to be exploited as a new source of tropical fragrance. Therefore, this study aims to elucidate the biosynthesis of secondary metabolites using phytochemical and transcriptomic approaches to understand the mechanisms of scents [...] Read more.
Hoya’s R.Br. attractive flower shapes and unique scents make it suitable to be exploited as a new source of tropical fragrance. Therefore, this study aims to elucidate the biosynthesis of secondary metabolites using phytochemical and transcriptomic approaches to understand the mechanisms of scents biosynthesis, especially terpenoid in Hoya. Three Hoya flower species were selected in this study: Hoya cagayanensis, Hoya lacunosa, and Hoya coriacea. The secondary metabolite profiles characterizing scents on flowers were performed using head space solid phase microextraction (HS-SPME). Gas chromatography-mass spectrometry (GC-MS) revealed 23 compounds from H. cagayanensis, 14 from H. lacunose, and 36 from H. coriacea. Volatiles from the three species had different fragrance profiles, with β-ocimene and methyl salicylate compounds dominating the odor in H. cagayanensis. The 1-octane-3-ol was found highest in H. lacunosa, and (Z)-acid butyric, 3-hexenyl ester was found highest in H. coriacea. Subsequent studies were conducted to identify the biosynthesis pathway of secondary metabolites responsible for the aroma profile released by Hoya flowers through transcriptome sequencing using the Illumina Hiseq 4000 platform. A total of 109,240 (75.84%) unigenes in H. cagayanensis, 42,479 (69.00%) in H. lacunosa and 72,610 (70.55%) in H. coriacea of the total unigenes were successfully annotated using public databases such as NCBI-Nr, KEGG, InterPro, and Gene Ontology (GO). In conclusion, this study successfully identified the complete outline of terpenoid biosynthesis pathways for the first time in Hoya. This discovery could lead to the exploitation of new knowledge in producing high-value compounds using the synthetic biology approach. Full article
(This article belongs to the Special Issue Genomics and Bioinformatics Applications in Horticulture)
Show Figures

Figure 1

18 pages, 9620 KB  
Article
Assessment and Classification of Volatile Profiles in Melon Breeding Lines Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry
by Drishti Majithia, Rita Metrani, Nitin Dhowlaghar, Kevin M. Crosby and Bhimanagouda S. Patil
Plants 2021, 10(10), 2166; https://doi.org/10.3390/plants10102166 - 13 Oct 2021
Cited by 14 | Viewed by 5320
Abstract
Cucumis melo L is one of the most commercial and economical crops in the world with several health beneficial compounds as such carotenoids, amino acids, vitamin A and C, minerals, and dietary fiber. Evaluation of the volatile organic compounds (VOCs) in different melon [...] Read more.
Cucumis melo L is one of the most commercial and economical crops in the world with several health beneficial compounds as such carotenoids, amino acids, vitamin A and C, minerals, and dietary fiber. Evaluation of the volatile organic compounds (VOCs) in different melon (Cucumis melo L.) breeding lines provides useful information for improving fruit flavor, aroma, and antimicrobial levels. In this study, the VOCs in 28 melon breeding lines harvested in 2019 were identified and characterized using head space solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). This identified 113 VOCs with significant differences in composition and contents of among the breeding lines, including 15 esters, 27 aldehydes, 35 alcohols, 14 ketones, 4 acids, 10 hydrocarbons, 5 sulfurs, and 3 other compounds. The highest average contents of all the VOCs were found in BL-30 (13,973.07 µg/kg FW) and the lowest were in BL-22 (3947.13 µg/kg FW). BL-9 had high levels of carotenoid-derived VOCs. The compounds with the highest contents were benzaldehyde, geranylacetone, and β-ionone. Quality parameters such as color and sugar contents of melons were also measured. All the melon color readings were within the typical acceptable range. BL-22 and BL-14 had the highest and lowest sugar contents, respectively. Principal component analysis (PCA) produced diverse clusters of breeding lines based on flavor and aroma. BL-4, BL-7, BL-12, BL-20, and BL-30 were thus selected as important breeding lines based on their organoleptic, antimicrobial, and health-beneficial properties. Full article
Show Figures

Figure 1

Back to TopTop