Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = hafnia-based ferroelectric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3859 KiB  
Article
Synaptic Characteristic of Hafnia-Based Ferroelectric Tunnel Junction Device for Neuromorphic Computing Application
by Wonwoo Kho, Gyuil Park, Jisoo Kim, Hyunjoo Hwang, Jisu Byun, Yoomi Kang, Minjeong Kang and Seung-Eon Ahn
Nanomaterials 2023, 13(1), 114; https://doi.org/10.3390/nano13010114 - 26 Dec 2022
Cited by 10 | Viewed by 3732
Abstract
Owing to the 4th Industrial Revolution, the amount of unstructured data, such as voice and video data, is rapidly increasing. Brain-inspired neuromorphic computing is a new computing method that can efficiently and parallelly process rapidly increasing data. Among artificial neural networks that mimic [...] Read more.
Owing to the 4th Industrial Revolution, the amount of unstructured data, such as voice and video data, is rapidly increasing. Brain-inspired neuromorphic computing is a new computing method that can efficiently and parallelly process rapidly increasing data. Among artificial neural networks that mimic the structure of the brain, the spiking neural network (SNN) is a network that imitates the information-processing method of biological neural networks. Recently, memristors have attracted attention as synaptic devices for neuromorphic computing systems. Among them, the ferroelectric doped-HfO2-based ferroelectric tunnel junction (FTJ) is considered as a strong candidate for synaptic devices due to its advantages, such as complementary metal–oxide–semiconductor device/process compatibility, a simple two-terminal structure, and low power consumption. However, research on the spiking operations of FTJ devices for SNN applications is lacking. In this study, the implementation of long-term depression and potentiation as the spike timing-dependent plasticity (STDP) rule in the FTJ device was successful. Based on the measured data, a CrossSim simulator was used to simulate the classification of handwriting images. With a high accuracy of 95.79% for the Mixed National Institute of Standards and Technology (MNIST) dataset, the simulation results demonstrate that our device is capable of differentiating between handwritten images. This suggests that our FTJ device can be used as a synaptic device for implementing an SNN. Full article
(This article belongs to the Special Issue Ferroelectric Nanostructures and Thin Films)
Show Figures

Figure 1

8 pages, 1823 KiB  
Article
Improved Ferroelectric Properties in Hf0.5Zr0.5O2 Thin Films by Microwave Annealing
by Biyao Zhao, Yunting Yan, Jinshun Bi, Gaobo Xu, Yannan Xu, Xueqin Yang, Linjie Fan and Mengxin Liu
Nanomaterials 2022, 12(17), 3001; https://doi.org/10.3390/nano12173001 - 30 Aug 2022
Cited by 10 | Viewed by 3872
Abstract
In the doped hafnia(HfO2)-based films, crystallization annealing is indispensable in forming ferroelectric phases. In this paper, we investigate the annealing effects of TiN/Hf0.5Zr0.5O2/TiN metal-ferroelectric-metal (MFM) capacitors by comparing microwave annealing (MWA) and rapid thermal annealing [...] Read more.
In the doped hafnia(HfO2)-based films, crystallization annealing is indispensable in forming ferroelectric phases. In this paper, we investigate the annealing effects of TiN/Hf0.5Zr0.5O2/TiN metal-ferroelectric-metal (MFM) capacitors by comparing microwave annealing (MWA) and rapid thermal annealing (RTA) at the same wafer temperature of 500 °C. The twofold remanent polarization (2Pr) of the MWA device is 63 µC/cm2, surpassing that of the RTA device (40 µC/cm2). Furthermore, the wake-up effect is substantially inhibited in the MWA device. The orthorhombic crystalline phase is observed in the annealed HZO films in the MWA and RTA devices, with a reduced TiN and HZO interdiffusion in MWA devices. Moreover, the MFM capacitors subjected to MWA treatment exhibit a lower leakage current, indicating a decreased defect density. This investigation shows the potential of MWA for application in ferroelectric technology due to the improvement in remanent polarization, wake-up effect, and leakage current. Full article
Show Figures

Figure 1

10 pages, 2452 KiB  
Article
Si-Doped HfO2-Based Ferroelectric Tunnel Junctions with a Composite Energy Barrier for Non-Volatile Memory Applications
by Yoseop Lee, Sungmun Song, Woori Ham and Seung-Eon Ahn
Materials 2022, 15(6), 2251; https://doi.org/10.3390/ma15062251 - 18 Mar 2022
Cited by 24 | Viewed by 4843
Abstract
Ferroelectric tunnel junctions (FTJs) have attracted attention as devices for advanced memory applications owing to their high operating speed, low operating energy, and excellent scalability. In particular, hafnia ferroelectric materials are very promising because of their high remanent polarization (below 10 nm) and [...] Read more.
Ferroelectric tunnel junctions (FTJs) have attracted attention as devices for advanced memory applications owing to their high operating speed, low operating energy, and excellent scalability. In particular, hafnia ferroelectric materials are very promising because of their high remanent polarization (below 10 nm) and high compatibility with complementary metal-oxide-semiconductor (CMOS) processes. In this study, a Si-doped HfO2-based FTJ device with a metal-ferroelectric-insulator-semiconductor (MFIS) structure was proposed to maximize the tunneling electro-resistance (TER) effect. The potential barrier modulation effect under applied varying voltage was analyzed, and the possibility of its application as a non-volatile memory device was presented through stability assessments such as endurance and retention tests. Full article
Show Figures

Figure 1

10 pages, 4128 KiB  
Article
Optimization of the In Situ Biasing FIB Sample Preparation for Hafnia-Based Ferroelectric Capacitor
by Qilan Zhong, Yiwei Wang, Yan Cheng, Zhaomeng Gao, Yunzhe Zheng, Tianjiao Xin, Yonghui Zheng, Rong Huang and Hangbing Lyu
Micromachines 2021, 12(12), 1436; https://doi.org/10.3390/mi12121436 - 24 Nov 2021
Cited by 2 | Viewed by 3410
Abstract
Hafnia-based ferroelectric (FE) thin films have received extensive attention in both academia and industry, benefitting from their outstanding scalability and excellent CMOS compatibility. Hafnia-based FE capacitors in particular have the potential to be used in dynamic random-access memory (DRAM) applications. Obtaining fine structure [...] Read more.
Hafnia-based ferroelectric (FE) thin films have received extensive attention in both academia and industry, benefitting from their outstanding scalability and excellent CMOS compatibility. Hafnia-based FE capacitors in particular have the potential to be used in dynamic random-access memory (DRAM) applications. Obtaining fine structure characterization at ultra-high spatial resolution is helpful for device performance optimization. Hence, sample preparation by the focused ion beam (FIB) system is an essential step, especially for in situ biasing experiments in a transmission electron microscope (TEM). In this work, we put forward three tips to improve the success rate of in situ biasing experiments: depositing a carbon protective layer to position the interface, welding the sample on the top of the Cu column of the TEM grid, and cutting the sample into a comb-like shape. By these means, in situ biasing of the FE capacitor was realized in TEM, and electric-field-induced tetragonal (t-) to monoclinic (m-) structure transitions in Hf0.5Zr0.5O2 FE film were observed. The improvement of FIB sample preparation technology can greatly enhance the quality of in situ biasing TEM samples, improve the success rate, and extend from capacitor sample preparation to other types. Full article
Show Figures

Graphical abstract

15 pages, 2544 KiB  
Article
Ferroelectricity in Si-Doped Hafnia: Probing Challenges in Absence of Screening Charges
by Umberto Celano, Andres Gomez, Paola Piedimonte, Sabine Neumayer, Liam Collins, Mihaela Popovici, Karine Florent, Sean R. C. McMitchell, Paola Favia, Chris Drijbooms, Hugo Bender, Kristof Paredis, Luca Di Piazza, Stephen Jesse, Jan Van Houdt and Paul van der Heide
Nanomaterials 2020, 10(8), 1576; https://doi.org/10.3390/nano10081576 - 11 Aug 2020
Cited by 19 | Viewed by 4517
Abstract
The ability to develop ferroelectric materials using binary oxides is critical to enable novel low-power, high-density non-volatile memory and fast switching logic. The discovery of ferroelectricity in hafnia-based thin films, has focused the hopes of the community on this class of materials to [...] Read more.
The ability to develop ferroelectric materials using binary oxides is critical to enable novel low-power, high-density non-volatile memory and fast switching logic. The discovery of ferroelectricity in hafnia-based thin films, has focused the hopes of the community on this class of materials to overcome the existing problems of perovskite-based integrated ferroelectrics. However, both the control of ferroelectricity in doped-HfO2 and the direct characterization at the nanoscale of ferroelectric phenomena, are increasingly difficult to achieve. The main limitations are imposed by the inherent intertwining of ferroelectric and dielectric properties, the role of strain, interfaces and electric field-mediated phase, and polarization changes. In this work, using Si-doped HfO2 as a material system, we performed a correlative study with four scanning probe techniques for the local sensing of intrinsic ferroelectricity on the oxide surface. Putting each technique in perspective, we demonstrated that different origins of spatially resolved contrast can be obtained, thus highlighting possible crosstalk not originated by a genuine ferroelectric response. By leveraging the strength of each method, we showed how intrinsic processes in ultrathin dielectrics, i.e., electronic leakage, existence and generation of energy states, charge trapping (de-trapping) phenomena, and electrochemical effects, can influence the sensed response. We then proceeded to initiate hysteresis loops by means of tip-induced spectroscopic cycling (i.e., “wake-up”), thus observing the onset of oxide degradation processes associated with this step. Finally, direct piezoelectric effects were studied using the high pressure resulting from the probe’s confinement, noticing the absence of a net time-invariant piezo-generated charge. Our results are critical in providing a general framework of interpretation for multiple nanoscale processes impacting ferroelectricity in doped-hafnia and strategies for sensing it. Full article
Show Figures

Graphical abstract

Back to TopTop