Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = gut–liver–pancreas axis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 776 KiB  
Review
Does Incretin Agonism Have Sustainable Efficacy?
by Sok-Ja Janket, Miyo K. Chatanaka, Dorsa Sohaei, Faleh Tamimi, Jukka H. Meurman and Eleftherios P. Diamandis
Cells 2024, 13(22), 1842; https://doi.org/10.3390/cells13221842 - 7 Nov 2024
Cited by 1 | Viewed by 2627
Abstract
Recent clinical trials using synthetic incretin hormones, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have demonstrated that these treatments ameliorated many complications related to obesity, emphasizing the significant impact of body weight on overall health. Incretins are enteroendocrine hormones [...] Read more.
Recent clinical trials using synthetic incretin hormones, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have demonstrated that these treatments ameliorated many complications related to obesity, emphasizing the significant impact of body weight on overall health. Incretins are enteroendocrine hormones secreted by gut endothelial cells triggered by nutrient ingestion. The phenomenon that oral ingestion of glucose elicits a much higher insulin secretion than intra-venous injection of equimolar glucose is known as the incretin effect. This also alludes to the thesis that food intake is the root cause of insulin resistance. Synthetic GLP-1 and GIP agonists have demonstrated unprecedented glucoregulation and body weight reduction. Also, randomized trials have shown their ability to prevent complications of obesity, including development of diabetes from prediabetes, reducing cardiovascular disease risks and renal complications in diabetic patients. Moreover, the benefits of these agonists persist among the patients who are already on metformin or insulin. The ultimate question is “Are these benefits of incretin agonism sustainable?” Chronic agonism of pancreatic β-cells may decrease the number of receptors and cause β-cell exhaustion, leading to β-cell failure. Unfortunately, the long-term effects of these drugs are unknown at the present because the longest duration in randomized trials is 3 years. Additionally, manipulation of the neurohormonal axis to control satiety and food intake may hinder the long-term sustainability of these treatments. In this review, we will discuss the incretins’ mechanism of action, challenges, and future directions. We will briefly review other molecules involved in glucose homeostasis such as amylin and glucagon. Amylin is co-expressed with insulin from the pancreas β-cells but does not have insulinotropic function. Amylin suppresses glucagon secretion, slowing gastric emptying and suppressing the reward center in the central nervous system, leading to weight loss. However, amylin can self-aggregate and cause serious cytotoxicity and may cause β-cell apoptosis. Glucagon is secreted by pancreatic α-cells and participates in glucose homeostasis in a glucose-dependent manner. In hypoglycemia, glucagon increases the blood glucose level by glycogenolysis and gluconeogenesis and inhibits glycogenesis in the liver. Several triple agonists, in combination with dual incretins and glucagon, are being developed. Full article
(This article belongs to the Collection The Molecular Research on Incretins and Diabetic Comorbidities)
Show Figures

Figure 1

15 pages, 1073 KiB  
Review
Revisiting the Immunometabolic Basis for the Metabolic Syndrome from an Immunonutritional View
by César Jeri Apaza, Juan Francisco Cerezo, Aurora García-Tejedor, Juan Antonio Giménez-Bastida and José Moisés Laparra-Llopis
Biomedicines 2024, 12(8), 1825; https://doi.org/10.3390/biomedicines12081825 - 12 Aug 2024
Cited by 3 | Viewed by 1871
Abstract
Metabolic syndrome (MetS) implies different conditions where insulin resistance constitutes a major hallmark of the disease. The disease incurs a high risk for the development of cardiovascular complications, and takes its toll in regard to the gut–liver axis (pancreas, primary liver and colorectal)-associated [...] Read more.
Metabolic syndrome (MetS) implies different conditions where insulin resistance constitutes a major hallmark of the disease. The disease incurs a high risk for the development of cardiovascular complications, and takes its toll in regard to the gut–liver axis (pancreas, primary liver and colorectal)-associated immunity. The modulation of immunometabolic responses by immunonutritional factors (IFs) has emerged as a key determinant of the gut–liver axis’ metabolic and immune health. IFs from plant seeds have shown in vitro and pre-clinical effectiveness primarily in dealing with various immunometabolic and inflammatory diseases. Only recently have immunonutritional studies established the engagement of innate intestinal immunity to effectively control immune alterations in inflamed livers preceding the major features of the MetS. However, integrative analyses and the demonstration of causality between IFs and specific gut–liver axis-associated immunometabolic imbalances for the MetS remain ill-defined in the field. Herein, a better understanding of the IFs with a significant role in the MetS, as well as within the dynamic interplay in the functional differentiation of innate immune key effectors (i.e., monocytes/macrophages), worsening or improving the disease, could be of crucial relevance. The development of an adequate intermediary phenotype of these cells can significantly contribute to maintaining the function of Tregs and innate lymphoid cells for the prevention and treatment of MetS and associated comorbidities. Full article
(This article belongs to the Special Issue Immunometabolic Determinants of Gut–Liver Axis Health)
Show Figures

Figure 1

42 pages, 1995 KiB  
Review
Gut–Liver–Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies
by Giada Marroncini, Laura Naldi, Serena Martinelli and Amedeo Amedei
Biomedicines 2024, 12(7), 1398; https://doi.org/10.3390/biomedicines12071398 - 24 Jun 2024
Cited by 9 | Viewed by 5486
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and [...] Read more.
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut–liver–pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases’ development by restoring the healthy balance of the GLPA. Full article
Show Figures

Figure 1

24 pages, 1368 KiB  
Review
Gut Bacteria and Neurotransmitters
by Leon M. T. Dicks
Microorganisms 2022, 10(9), 1838; https://doi.org/10.3390/microorganisms10091838 - 14 Sep 2022
Cited by 251 | Viewed by 24279
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate [...] Read more.
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

20 pages, 1696 KiB  
Review
The Endocrine–Metabolic Axis Regulation in Offspring Exposed to Maternal Obesity—Cause or Consequence in Metabolic Disease Programming?
by Luís F. Grilo, Mariana S. Diniz, Carolina Tocantins, Ana L. Areia and Susana P. Pereira
Obesities 2022, 2(3), 236-255; https://doi.org/10.3390/obesities2030019 - 19 Jul 2022
Cited by 10 | Viewed by 5307
Abstract
Obesity incidence is rising worldwide, including women of reproductive age, contributing to increased gestations in which Maternal Obesity (MO) occurs. Offspring born to obese mothers present an increased predisposition to develop metabolic (e.g., obesity, diabetes) and cardiovascular disease (CVD). The developmental programming of [...] Read more.
Obesity incidence is rising worldwide, including women of reproductive age, contributing to increased gestations in which Maternal Obesity (MO) occurs. Offspring born to obese mothers present an increased predisposition to develop metabolic (e.g., obesity, diabetes) and cardiovascular disease (CVD). The developmental programming of the metabolic dysfunction in MO offspring can initiate in utero. The different availability of metabolic substrates, namely glucose, can modulate cellular growth, proliferation, and differentiation, resulting in different levels of tissue maturation and function. We defined the remodelling of these early processes as the first hit of metabolic disease programming. Among these, adipocyte early differentiation and gut dysbiosis are initial repercussions occurring in MO offspring, contributing to -tissue-specific dysfunction. The second hit of disease programming can be related to the endocrine–metabolic axis dysregulation. The endocrine–metabolic axis consists of multi-organ communication through the release of factors that are able to regulate the metabolic fate of cells of organs involved in physiological metabolic homeostasis. Upon adipose tissue and gut early dysregulation, these organs’ endocrine function can be programmed to the disrupted release of multiple factors (e.g., adiponectin, leptin, glucagon-like peptide). This can be perceived as a natural mechanism to overcome metabolic frailty in an attempt to prevent or postpone organ-specific disease. However, the action of these hormones on other tissues may potentiate metabolic dysfunction or even trigger disease in organs (liver, pancreas, heart) that were also programmed in utero for early disease. A second phase of the endocrine–metabolic dysregulation happens when the affected organs (e.g., liver and pancreas) self-produce an endocrine response, affecting all of the involved tissues and resulting in a new balance of the endocrine–metabolic axis. Altogether, the second hit exacerbates the organ-specific susceptibility to disease due to the new metabolic environment. The developmental programming of the endocrine–metabolic axis can start a vicious cycle of metabolic adaptations due to the release of factors, leading to an endocrine response that can jeopardize the organism’s function. Diseases programmed by MO can be boosted by endocrine dysregulation, namely Non-Alcoholic Fatty Liver Disease, Non-Alcoholic Fatty Pancreas Disease, and the aggravation of the adipose tissue and gut dysfunction. Chronic metabolic dysregulation can also predispose MO offspring to CVD through the modulation of the endocrine environment and/or the metabolic status. To cease the vicious cycle of MO disease transmission among generations and-provide preventive and specialized prenatal and postnatal care to MO offspring, it is necessary to understand the molecular mechanisms underlying the MO-related disease development. In this review, we summarize most of the developmental programming molecular events of the endocrine–metabolic axis described on the offspring exposed to MO, providing a brief overview of the potential mechanisms that predispose MO offspring to metabolic disease, and discuss the programming of the endocrine–metabolic axis as a plausible mechanism for metabolic disease predisposition in MO offspring. Full article
Show Figures

Figure 1

17 pages, 3645 KiB  
Article
The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
by Paul W. Chrystal, Curtis R. French, Francesca Jean, Serhiy Havrylov, Suey van Baarle, Ann-Marie Peturson, Pengfei Xu, J. Gage Crump, David B. Pilgrim, Ordan J. Lehmann and Andrew J. Waskiewicz
Genes 2021, 12(2), 170; https://doi.org/10.3390/genes12020170 - 26 Jan 2021
Cited by 8 | Viewed by 4219
Abstract
Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 [...] Read more.
Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld–Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left–right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a−/−; foxc1b−/− homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left–right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left–right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld–Rieger syndrome patients. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

30 pages, 2024 KiB  
Review
Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance
by Carine Beaupere, Alexandrine Liboz, Bruno Fève, Bertrand Blondeau and Ghislaine Guillemain
Int. J. Mol. Sci. 2021, 22(2), 623; https://doi.org/10.3390/ijms22020623 - 9 Jan 2021
Cited by 157 | Viewed by 24219
Abstract
Glucocorticoids (GCs) are steroids secreted by the adrenal cortex under the hypothalamic-pituitary-adrenal axis control, one of the major neuro-endocrine systems of the organism. These hormones are involved in tissue repair, immune stability, and metabolic processes, such as the regulation of carbohydrate, lipid, and [...] Read more.
Glucocorticoids (GCs) are steroids secreted by the adrenal cortex under the hypothalamic-pituitary-adrenal axis control, one of the major neuro-endocrine systems of the organism. These hormones are involved in tissue repair, immune stability, and metabolic processes, such as the regulation of carbohydrate, lipid, and protein metabolism. Globally, GCs are presented as ‘flight and fight’ hormones and, in that purpose, they are catabolic hormones required to mobilize storage to provide energy for the organism. If acute GC secretion allows fast metabolic adaptations to respond to danger, stress, or metabolic imbalance, long-term GC exposure arising from treatment or Cushing’s syndrome, progressively leads to insulin resistance and, in fine, cardiometabolic disorders. In this review, we briefly summarize the pharmacological actions of GC and metabolic dysregulations observed in patients exposed to an excess of GCs. Next, we describe in detail the molecular mechanisms underlying GC-induced insulin resistance in adipose tissue, liver, muscle, and to a lesser extent in gut, bone, and brain, mainly identified by numerous studies performed in animal models. Finally, we present the paradoxical effects of GCs on beta cell mass and insulin secretion by the pancreas with a specific focus on the direct and indirect (through insulin-sensitive organs) effects of GCs. Overall, a better knowledge of the specific action of GCs on several organs and their molecular targets may help foster the understanding of GCs’ side effects and design new drugs that possess therapeutic benefits without metabolic adverse effects. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

39 pages, 1671 KiB  
Review
Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH
by Gianluca Svegliati-Baroni, Bárbara Patrício, Gessica Lioci, Maria Paula Macedo and Amalia Gastaldelli
Int. J. Mol. Sci. 2020, 21(16), 5820; https://doi.org/10.3390/ijms21165820 - 13 Aug 2020
Cited by 49 | Viewed by 13849
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in the portal circulation, i.e., bacterial translocation. Full article
Show Figures

Figure 1

15 pages, 343 KiB  
Review
Targeting Microbiota: What Do We Know about It at Present?
by Aleksejs Derovs, Sniedze Laivacuma and Angelika Krumina
Medicina 2019, 55(8), 459; https://doi.org/10.3390/medicina55080459 - 10 Aug 2019
Cited by 27 | Viewed by 5698
Abstract
The human microbiota is a variety of different microorganisms. The composition of microbiota varies from host to host, and it changes during the lifetime. It is known that microbiome may be changed because of a diet, bacteriophages and different processes for example, such [...] Read more.
The human microbiota is a variety of different microorganisms. The composition of microbiota varies from host to host, and it changes during the lifetime. It is known that microbiome may be changed because of a diet, bacteriophages and different processes for example, such as inflammation. Like all other areas of medicine, there is a continuous growth in the area of microbiology. Different microbes can reside in all sites of a human body, even in locations that were previously considered as sterile; for example, liver, pancreas, brain and adipose tissue. Presently one of the etiological factors for liver disease is considered to be pro-inflammatory changes in a host’s organism. There are lot of supporting data about intestinal dysbiosis and increased intestinal permeability and its effect on development of liver disease pointing to the gut–liver axis. The gut–liver axis affects pathogenesis of many liver diseases, such as chronic hepatitis B, chronic hepatitis C, alcoholic liver disease, non-alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. Gut microbiota has been implicated in the regulation of brain health, emphasizing the gut–brain axis. Also, experiments with mice showed that microorganisms have significant effects on the blood–brain barrier integrity. Microbiota can modulate a variety of mechanisms through the gut–liver axis and gut–brain axis. Normal intestinal flora impacts the health of a host in many positive ways, but there is now significant evidence that intestinal microbiota, especially altered, have the ability to impact the pathologies of many diseases through different inflammatory mechanisms. At this point, many of the pathophysiological reactions in case of microbial disbyosis are still unclear. Full article
25 pages, 1786 KiB  
Review
Update on FXR Biology: Promising Therapeutic Target?
by Chang Yeob Han
Int. J. Mol. Sci. 2018, 19(7), 2069; https://doi.org/10.3390/ijms19072069 - 16 Jul 2018
Cited by 162 | Viewed by 13617
Abstract
Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular [...] Read more.
Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development. Full article
(This article belongs to the Special Issue Molecular Biology of Nuclear Receptors)
Show Figures

Graphical abstract

Back to TopTop