Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = groove-epoxy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3634 KiB  
Article
Optimization of Hierarchical Groove–Perforation Structures in PET Foam Cores for Wind Turbine Blade Applications
by Jinlin Li, Gaojian Lin and Xiaowei Chen
Materials 2025, 18(12), 2876; https://doi.org/10.3390/ma18122876 - 18 Jun 2025
Viewed by 351
Abstract
To bridge the mechanical performance gap between polyethylene terephthalate (PET) foam cores and balsa wood in wind turbine blades, this study proposes a hierarchical groove-perforation design for structural optimization. A finite element model integrating PET foam and epoxy resin was developed and validated [...] Read more.
To bridge the mechanical performance gap between polyethylene terephthalate (PET) foam cores and balsa wood in wind turbine blades, this study proposes a hierarchical groove-perforation design for structural optimization. A finite element model integrating PET foam and epoxy resin was developed and validated against experimental shear modulus data (α < 0.5%). Machine learning combined with a multi-island genetic algorithm (MIGA) optimized groove parameters (spacing: 7.5–30 mm, width: 0.9–2 mm, depth: 0–23.5 mm, perforation angle: 45–90°) under constant resin infusion. The optimal configuration (width: 1 mm, spacing: 15 mm, angle: 65°) increased the shear modulus by 9.2% (from 125 MPa to 137.1 MPa) and enhanced compressive/tensile modulus by 10.7% compared to conventional designs, without increasing core mass. Stress distribution analysis demonstrated that secondary grooves improved resin infiltration uniformity and interfacial stress transfer, reducing localized strain concentration. Further integration of machine learning with MIGA for parameter optimization enabled the shear modulus to reach 150 MPa while minimizing weight gain, achieving a balance between structural performance and material efficiency. This hierarchical optimization strategy offers a cost-effective and lightweight alternative to balsa, promoting broader application of PET foam cores in wind energy and other high-performance composite structures. Full article
Show Figures

Figure 1

26 pages, 6314 KiB  
Article
Influence of PBO-FRCM Composite Mesh Anchorage on the Strengthening Effectiveness of Reinforced Concrete Slabs
by Filip Grzymski, Tomasz Trapko and Michał Musiał
Materials 2025, 18(11), 2583; https://doi.org/10.3390/ma18112583 - 31 May 2025
Viewed by 517
Abstract
FRCM (Fabric-Reinforced Cementitious Matrix) composites, while providing an effective alternative to FRP (Fiber-Reinforced Polymer) strengthening systems when epoxy resins cannot be used, typically fail to achieve their full strengthening potential. Research indicates that appropriate mesh anchorage systems can minimize some of the undesirable [...] Read more.
FRCM (Fabric-Reinforced Cementitious Matrix) composites, while providing an effective alternative to FRP (Fiber-Reinforced Polymer) strengthening systems when epoxy resins cannot be used, typically fail to achieve their full strengthening potential. Research indicates that appropriate mesh anchorage systems can minimize some of the undesirable effects that limit FRCM composite performance. This study investigates the effectiveness of different anchorage systems for PBO (p-Phenylene Benzobis Oxazole) fibers in FRCM composites used for strengthening reinforced concrete slabs. A series of unidirectionally bent RC slabs were tested under four-point bending: an unstrengthened control element, slabs strengthened with PBO-FRCM without anchorage, with bar anchorage (GFRP bar in a groove), and with cord anchorage (PBO cord through the slab). The research focused on analyzing the load–deflection behavior and key strain mechanisms that influence structural performance. The findings indicate that a single layer of PBO-FRCM increases bending capacity, raises yield load, and delays initial cracking. Most significantly, the research reveals substantial differences in composite mesh utilization efficiency. This study confirms that mechanical anchorage, particularly bar anchorage, significantly enhances the effectiveness of PBO-FRCM strengthening systems by delaying composite detachment and allowing for greater utilization of the high-strength fiber material. These results contribute valuable insights for RC slabs using FRCM composite systems and the anchorage of their mesh. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

12 pages, 4779 KiB  
Article
Influence of Proximal-Cervical Undermined Enamel Areas on Marginal Quality and Enamel Integrity of Laboratory and CAD/CAM Ceramic Inlays and Partial Crowns
by Roland Frankenberger, Katharina Friedrich, Marie-Christine Dudek, Julia Winter, Norbert Krämer and Matthias J. Roggendorf
J. Funct. Biomater. 2025, 16(3), 82; https://doi.org/10.3390/jfb16030082 - 1 Mar 2025
Viewed by 1043
Abstract
(1) The aim of this in vitro study was to investigate the handling of proximal-cervical undermined enamel margins on the adhesive performance of differently fabricated and differently cemented ceramic inlays and partial crowns (2) Methods: 192 extracted third molars received MOD (n [...] Read more.
(1) The aim of this in vitro study was to investigate the handling of proximal-cervical undermined enamel margins on the adhesive performance of differently fabricated and differently cemented ceramic inlays and partial crowns (2) Methods: 192 extracted third molars received MOD (n = 96) and partial crown (n = 96) preparations. A mesial 2 × 2 × 4 mm cervical groove was created in dentin to simulate a deeper (dentin) caries excavation. This dentin groove was either left (G/groove), filled with composite (F/filling), or completely removed (D/dentin). Distal proximal boxes did not receive a groove and served as controls within the same tooth. Labside (e.max Press) restorations additionally went through a temporary phase. Labside and chairside (e.max CAD) inlays and partial crowns were then adhesively luted with Syntac/Variolink Esthetic (SV) or Adhese Universal/Variolink Esthetic (AV). Initially, and again after thermomechanical loading (TML: 1 million cycles at 50 N, 25,000 thermocycles at 5 °C/55 °C), specimens were molded and the resulting 24 groups of epoxy replicas (n = 8) were gold-sputtered and examined for marginal gaps using scanning electron microscopy (200× magnification). Light microscopy (10× magnification) was used to measure proximal cervical crack propagation in adjacent enamel. (3) Results: Regardless of the adhesive system, D groups generally showed significantly lower marginal quality (79–88%; p < 0.05), with the universal adhesive performing better than the multi-step adhesive system (p < 0.05). Subgroups G and F were similar in marginal quality (94–98%; p > 0.05) and not worse than the controls (p > 0.05) regardless of the adhesive system, but showed less cracking in F than in G (p < 0.05). In general, fewer cracks were observed in chairside CAD/CAM restorations than in laboratory-fabricated restorations (p < 0.05). Partial crowns showed better marginal quality (96–98%) and less cracking than inlays (p < 0.05). (4) Conclusions: If the dentin level is lower than the enamel level in ceramic preparations after caries excavation in the proximal box, the resulting undermined enamel should not be removed. In terms of enamel integrity, partial crowns outperformed inlays. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

21 pages, 15356 KiB  
Article
Bonding Performance of Concrete Structure Strengthened with Ultra-High-Performance Concrete Under Bending Experiment
by Chao Zhu, Yayi Feng, Jie Tang, Zhimei Jiang, Yinbin Li and Jun Yang
Buildings 2024, 14(12), 4040; https://doi.org/10.3390/buildings14124040 - 19 Dec 2024
Viewed by 987
Abstract
Ultra-high-performance concrete is widely used in bridge strengthening to improve mechanical performance and bridge durability. Interfacial bonding performance is a key factor in ensuring the effectiveness of ultra-high-performance concrete strengthening. The bending test of the UHPC–NC composite structure was carried out in this [...] Read more.
Ultra-high-performance concrete is widely used in bridge strengthening to improve mechanical performance and bridge durability. Interfacial bonding performance is a key factor in ensuring the effectiveness of ultra-high-performance concrete strengthening. The bending test of the UHPC–NC composite structure was carried out in this article. The effects of groove treatment type and epoxy resin bonding were considered to discuss the damage modes, load–deflection relationships, and strengths. The interfacial tensile strength of the UHPC–NC composite structure and the distribution pattern of cracks were clarified. The results of the test showed that (a) only 22.2% of the groove-treated specimens failed due to bonding surface failure, indicating that the UHPC–NC bonding surface has a high degree of reliability; (b) the strength of specimens with an epoxy adhesive interface was the lowest. It was only 21% higher than the pure normal concrete specimen, and the effective synergistic force of UHPC–NC cannot be achieved; (c) the specimens treated with a positive trapezoidal keyway exhibited the highest strength, with an increase of approximately 200% compared to the pure normal concrete specimens. The strength of bending specimens with right-angled and inverted trapezoidal grooves increased by approximately 100% compared with pure normal concrete specimens. Based on the established three-dimensional numerical model and the analysis of test results under economic and safe conditions, the positive trapezoidal keyway specimen exhibits superior interfacial bonding–tensile performances. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

40 pages, 19786 KiB  
Review
State-of-the-Art Review of Microcapsule Self-Repairing Concrete: Principles, Applications, Test Methods, Prospects
by Lu Jiang, Mingli Wu, Fei Du, Dongdong Chen, Lihua Xiao, Wei Chen, Wei Du and Qingjun Ding
Polymers 2024, 16(22), 3165; https://doi.org/10.3390/polym16223165 - 13 Nov 2024
Cited by 11 | Viewed by 6102
Abstract
Cement-based materials are widely used in construction worldwide, but they are vulnerable to environmental stressors and thermal fluctuations, leading to the formation of internal cracks that compromise structural integrity and durability. Traditional repair methods such as surface coatings, grouting, and groove filling are [...] Read more.
Cement-based materials are widely used in construction worldwide, but they are vulnerable to environmental stressors and thermal fluctuations, leading to the formation of internal cracks that compromise structural integrity and durability. Traditional repair methods such as surface coatings, grouting, and groove filling are often costly and labor-intensive. In response, self-repairing technologies for cement-based materials have emerged as an innovative and promising solution, offering the potential to significantly extend the lifespan of structures and reduce maintenance costs. A particularly novel approach is the development of microcapsule-based self-repairing concrete. In this system, repair agents are encapsulated within microcapsules and combined with curing agents in the concrete matrix. When cracks form, the microcapsules rupture, releasing the repair agents to autonomously heal the damage. This self-repairing mechanism is characterized by its high efficiency, durability, environmental sustainability, and versatility, making it a promising alternative to traditional repair methods. Recent research has focused on the development of microcapsules with various core materials, such as TDI (toluene diisocyanate), IPDI (isophorone diisocyanate), or epoxy resin, as well as composite shell materials including paraffin wax, PE (polyethylene) wax, nano-SiO2, and nano-CaCO3. A novel advancement in this area involves the enhancement of microcapsules through the incorporation of magnetic nanomaterials into the shell, providing new possibilities for self-repairing systems that address cracks in cement-based materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 5329 KiB  
Article
Preliminary Study on the Bending Behavior of Solid Timber Beams Reinforced with Basalt Fiber-Reinforced Polymer Bars
by Justyna Dygas, Michał Marcin Bakalarz and Paweł Grzegorz Kossakowski
Appl. Sci. 2024, 14(20), 9558; https://doi.org/10.3390/app14209558 - 19 Oct 2024
Viewed by 1324
Abstract
The purpose of this work is to test the effectiveness of strengthening timber structures by means of composite bars. This article presents the results of preliminary tests carried out on solid beams made of fir wood. The test specimens, which are classified as [...] Read more.
The purpose of this work is to test the effectiveness of strengthening timber structures by means of composite bars. This article presents the results of preliminary tests carried out on solid beams made of fir wood. The test specimens, which are classified as strength class C24, had dimensions of 7 × 17 × 330 cm. Beams were reinforced with 8 mm diameter basalt fiber-reinforced polymer (BFRP) bars. The bars were glued into grooved channels along the bottom surface. Epoxy resin was used as an adhesive. The strength tests were conducted in accordance with the requirements of EN 408+A1:2012. The four-point bending scheme was adopted. The tests were conducted in the following two series: unreinforced beams (A) and beams reinforced with composites (B). Five elements were tested in each series. The reinforcement resulted in an average increase in the bending moment value of 8.41%. The deflection value at failure increased by 19.77%. The work also includes an analysis of the failure mode and a ductility analysis. Further tests should be carried out using a higher reinforcement ratio. A higher reinforcement ratio should make the presented reinforcement configuration more effective. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

30 pages, 3954 KiB  
Article
Investigation of the Robust Integration of Distributed Fibre Optic Sensors in Structural Concrete Components
by Johannes Wimmer and Thomas Braml
Sensors 2024, 24(18), 6122; https://doi.org/10.3390/s24186122 - 22 Sep 2024
Viewed by 1824
Abstract
In recent times, the value of data has grown. This tendency is also observeable in the construction industry, where research and digitalisation are increasingly oriented towards the collection, processing and analysis of different types of data. In addition to planning data, measurement data [...] Read more.
In recent times, the value of data has grown. This tendency is also observeable in the construction industry, where research and digitalisation are increasingly oriented towards the collection, processing and analysis of different types of data. In addition to planning data, measurement data is a main focus. fibre optic measurements offer a highly precise and comprehensive approach to data collection. It is, however, important to note that this technology is still in research regarding concrete structures. This paper presents two methods of integrating filigree sensors into concrete structures. The first approach entails wrapping a fibre around a tendon duct and analysing the installation and associated measurements. The second method involves bonding polyimide and acrylate-coated fibres with 2K epoxy and cyanoacrylate in the grooves of rebars, exposing them to chemical environments. The resulting measurement data is evaluated qualitatively and quantitatively to ascertain its resilience to environmental factors. These developed criteria are consolidated in a decision matrix. Fibre-adhesive combinations necessitate protection from chemical and mechanical influences. The limitations of the solutions are pointed out, and alternative options are proposed. Full article
(This article belongs to the Special Issue Sensor-Based Structural Health Monitoring of Civil Infrastructure)
Show Figures

Figure 1

17 pages, 45521 KiB  
Article
Use of Geopolymer and Carbon Fiber-Reinforced Polymer for Repairing Reinforced Concrete Deck Soffit
by Yeou-Fong Li, Guo-Wei Hao, Jin-Yuan Syu, Bian-Yu Chen, Wei-Hao Lee and Ying-Kuan Tsai
Materials 2023, 16(12), 4459; https://doi.org/10.3390/ma16124459 - 19 Jun 2023
Cited by 4 | Viewed by 1759
Abstract
This study aimed to assess the feasibility of utilizing geopolymer for repairing reinforced concrete beams. Three types of beam specimens were fabricated: benchmark specimens without any grooves, rectangular-grooved beams, and square-grooved beams. The repair materials employed included geopolymer material, and epoxy resin mortar, [...] Read more.
This study aimed to assess the feasibility of utilizing geopolymer for repairing reinforced concrete beams. Three types of beam specimens were fabricated: benchmark specimens without any grooves, rectangular-grooved beams, and square-grooved beams. The repair materials employed included geopolymer material, and epoxy resin mortar, while carbon fiber sheets were used as reinforcement in select cases. The repair materials were applied to the rectangular and square-grooved specimens, with the carbon fiber sheets attached to the tension side of the specimens. To evaluate the flexural strength of the concrete specimens, a third-point loading test was conducted. The test results indicated that the geopolymer exhibited higher compressive strength and shrinkage rate compared to the epoxy resin mortar. Furthermore, the specimens reinforced with carbon fiber sheets demonstrated even greater strength than the benchmark specimens. In terms of flexural strength under cyclic third-point loading tests, the carbon fiber-reinforced specimens exhibited the ability to withstand over 200 cycles of repeated loading at 0.8 times the ultimate load. In contrast, the benchmark specimens could only withstand seven cycles. These findings highlight that the use of carbon fiber sheets not only enhances compressive strength but also improves resistance to cyclic loading. Full article
Show Figures

Figure 1

16 pages, 6732 KiB  
Article
Effects of Surface Properties of Fiber on Interface Properties of Carbon Fiber/Epoxy Resin and Its Graphene Oxide Modified Hybrid Composites
by Weihua Bai, Wenjun Liu, Weidong Li, Zewen Lin, Hong Qiu and Xiaolan Hu
Materials 2023, 16(11), 4005; https://doi.org/10.3390/ma16114005 - 26 May 2023
Cited by 5 | Viewed by 2058
Abstract
In the present study, surface properties of three types of carbon fibers (CCF300, CCM40J, and CCF800H) on the interface properties of carbon fiber/epoxy resin (CF/EP) were analyzed. The composites are further modified by graphene oxide (GO) to obtain GO/CF/EP hybrid composites. Meanwhile, the [...] Read more.
In the present study, surface properties of three types of carbon fibers (CCF300, CCM40J, and CCF800H) on the interface properties of carbon fiber/epoxy resin (CF/EP) were analyzed. The composites are further modified by graphene oxide (GO) to obtain GO/CF/EP hybrid composites. Meanwhile, the effect of the surface properties of CFs and the additive graphene oxide on the interlaminar shear properties and dynamic thermomechanical properties of GO/CF/EP hybrid composites are also analyzed. The results show that the higher surface oxygen-carbon ratio of carbon fiber (CCF300) has a positive effect on improving the glass transition temperature (Tg) of the CF/EP composites. The Tg of CCF300/EP is 184.4 °C, while the Tg of CCM40J/EP and CCF800/EP are only 177.1 °C and 177.4 °C, respectively. Furthermore, deeper and more dense grooves on the fiber surface (CCF800H and CCM40J) are more conducive to improving the interlaminar shear performance of the CF/EP composites. The interlaminar shear strength (ILSS) of CCF300/EP is 59.7 MPa, and that of CCM40J/EP and CCF800H/EP are 80.1 MPa and 83.5 MPa, respectively. For the GO/CF/EP hybrid composites, graphene oxide with abundant oxygen-containing groups is beneficial to improve the interfacial interaction. Graphene oxide can significantly improve the glass transition temperature and interlamellar shear strength of GO/CCF300/EP composites fabricated by CCF300 with a higher surface oxygen-carbon ratio. For the CCM40J and CCF800H with lower surface oxygen-carbon ratio, graphene oxide has a better modification effect on the glass transition temperature and interlamellar shear strength of GO/CCM40J/EP composites fabricated by CCM40J with deeper and finer surface grooves. Regardless of the type of carbon fiber, the GO/CF/EP hybrid composites with 0.1% graphene oxide have the optimized interlaminar shear strength, and the GO/CF/EP hybrid composites with 0.5% graphene oxide have the maximum glass transition temperature. Full article
Show Figures

Figure 1

12 pages, 7663 KiB  
Article
The Influence of MSR-B Mg Alloy Surface Preparation on Bonding Properties
by Katarzyna Łyczkowska, Damian Miara, Beata Rams, Janusz Adamiec and Katarzyna Baluch
Materials 2023, 16(10), 3887; https://doi.org/10.3390/ma16103887 - 22 May 2023
Cited by 3 | Viewed by 1872
Abstract
Nowadays, industrial adhesives are replacing conventional bonding methods in many industries, including the automotive, aviation, and power industries, among others. The continuous development of joining technology has promoted adhesive bonding as one of the basic methods of joining metal materials. This article presents [...] Read more.
Nowadays, industrial adhesives are replacing conventional bonding methods in many industries, including the automotive, aviation, and power industries, among others. The continuous development of joining technology has promoted adhesive bonding as one of the basic methods of joining metal materials. This article presents the influence of surface preparation of magnesium alloys on the strength properties of a single-lap adhesive joint using a one-component epoxy adhesive. The samples were subjected to shear strength tests and metallographic observations. The lowest properties of the adhesive joint were obtained on samples degreased with isopropyl alcohol. The lack of surface treatment before joining led to destruction by adhesive and mixed mechanisms. Higher properties were obtained for samples ground with sandpaper. The depressions created as a result of grinding increased the contact area of the adhesive with the magnesium alloys. The highest properties were noticed for samples after sandblasting. This proved that the development of the surface layer and the formation of larger grooves increased both the shear strength and the resistance of the adhesive bonding to fracture toughness. It was found that the method of surface preparation had a significant influence on the resulting failure mechanism, and the adhesive bonding of the casting of magnesium alloy QE22 can be used successfully. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

14 pages, 3408 KiB  
Article
An Experimental and Numerical Analysis of Glued Laminated Beams Strengthened by Pre-Stressed Basalt Fibre-Reinforced Polymer Bars
by Agnieszka Wdowiak-Postulak, František Bahleda and Jozef Prokop
Materials 2023, 16(7), 2776; https://doi.org/10.3390/ma16072776 - 30 Mar 2023
Cited by 9 | Viewed by 2076
Abstract
Damage often develops in glued laminated timber members under high bending loads due to natural defects in the timber, which results in their low load-bearing capacity and stiffness. In order to improve the bending mechanical properties of glulam beams, a new type of [...] Read more.
Damage often develops in glued laminated timber members under high bending loads due to natural defects in the timber, which results in their low load-bearing capacity and stiffness. In order to improve the bending mechanical properties of glulam beams, a new type of longitudinal glulam reinforcement with pre-stressed basalt fibre-reinforced polymer composites (BFRP) was developed using the Near Surface Mounted (NSM) technique. The strengthening method consisted of two pre-stressed BFRP bars glued into the grooves at the bottom side of the beam; meanwhile, for the second strengthening alternative, the third BFRP bar was embedded into the groove at the top side of the beam. Therefore, an experimental study was carried out to verify this strengthening technique, in which fifteen full-size timber beams were tested with and without bonded BFRP bar reinforcement in three series. According to the results of this experimental study, it can be seen that the effective load-bearing capacity of the reinforced beams increased up to 36% and that the stiffness of the beams increased by 23% compared to the unreinforced beams. The tensile stresses in the wooden fibres were reduced by 11.32% and 25.42% on average for the beams reinforced with two and three BFRP bars, respectively. On the other hand, the compressive stresses were reduced by 16.53% and 32.10% compared to the unreinforced beams. The usual failure mode saw the cracking of the wood fibres at the defects, while for some specimens, there were also signs of cracks in the epoxy adhesive bond; however, the crack propagation was, overall, significantly reduced. The numerical calculations also show a good correlation with the experimental results. The difference in the results between the experimental and numerical analysis of the reinforced and unreinforced full-sized beams ranged between 3.63% and 11.45%. Full article
Show Figures

Figure 1

20 pages, 5674 KiB  
Article
Improving the Integrated Fabrication of Insulation Systems in Electric Drives by Injection Molding of Thermosets Due to Processing Conditions and Slot Design
by Uta Rösel, Maximilian Kneidl, Jörg Franke and Dietmar Drummer
Polymers 2023, 15(5), 1165; https://doi.org/10.3390/polym15051165 - 25 Feb 2023
Cited by 4 | Viewed by 2100
Abstract
The expanding demand for electro mobility in general and specifically for electrified vehicles requires the expansion of electro mobility technology with respect to variations in the requirements of the process and the application. Within the stator, the electrical insulation system has a high [...] Read more.
The expanding demand for electro mobility in general and specifically for electrified vehicles requires the expansion of electro mobility technology with respect to variations in the requirements of the process and the application. Within the stator, the electrical insulation system has a high impact on the application properties. So far, limitations, such as the identification of suitable materials for the stator insulation or high costs in the processes, have hindered the implementation of new applications. Therefore, a new technology that allows integrated fabrication via the injection molding of thermosets is founded in order to expand the applications of stators. The possibility of the integrated fabrication of insulation systems to meet the demands of the application can be improved by the processing conditions and the slot design. Within this paper, two epoxy (EP) types with different fillers are investigated to show the impact of the fabrication process in terms of different parameters; these include the holding pressure or the temperature setup, as well as the slot design and with that the flow conditions. To evaluate the improvement in the insulation system of electric drives, a single slot sample, consisting of two parallel copper wires, was used. Then, the two parameters of the average partial discharge (PD) and the partial discharge extinction voltage (PDEV), as well as the full encapsulation detected by microscopy images, were analyzed. It was shown that both characteristics (electric properties—PD and PDEV; full encapsulation) could be improved in terms of an increase in the holding pressure (up to 600 bar) or a reduction in the heating time (around 40 s), as well as the injection speed (down to 15 mm/s). Further, an improvement in the properties can be reached by increasing the space between the wires, as well as the wire and the stack, due to a higher slot depth or by implementing flow-improving grooves that have a positive effect on the flow conditions. With that, the optimization of the integrated fabrication of insulation systems in electric drives via the injection molding of thermosets was enabled with respect to the process conditions and the slot design. Full article
(This article belongs to the Collection Plastics Technology and Engineering)
Show Figures

Graphical abstract

22 pages, 12239 KiB  
Article
Application of Digital Image Correlation to Evaluate Strain, Stiffness and Ductility of Full-Scale LVL Beams Strengthened by CFRP
by Michał Marcin Bakalarz and Paweł Piotr Tworzewski
Materials 2023, 16(3), 1309; https://doi.org/10.3390/ma16031309 - 3 Feb 2023
Cited by 14 | Viewed by 3409
Abstract
Due to limitations of traditional measuring methods, a necessity of verification of applicability of optical measuring systems in different fields of science is required. The paper presents the application of a non-contact, non-destructive ARAMIS optical system in the analysis of static work of [...] Read more.
Due to limitations of traditional measuring methods, a necessity of verification of applicability of optical measuring systems in different fields of science is required. The paper presents the application of a non-contact, non-destructive ARAMIS optical system in the analysis of static work of unstrengthened and strengthened laminated veneer lumber beams (LVL) with composite materials, subjected to a four-point bending test. The beams were strengthened with Carbon Fiber Reinforced Polymer (CFRP) sheets and laminates. The sheets were bonded to the external surfaces in three configurations differing in the number of layers applied and the degree of coverage of the side surface. The CFRP laminates were glued into predrilled grooves and applied to the underside of the beams. An adhesive based on epoxy resin was used. The scope of the work includes analysis of the strain distribution, stiffness and ductility. The analysis was performed on the basis of measurements made with an optical measurement system. The strain analysis indicated a change of the distribution of the strain in the compressive zone from linear for the unstrengthened to bilinear for the strengthened beams. The stiffness increase was equal from 14% up to 45% for the application of the CFRP laminates in the grooves and CFRP sheets bonded externally, respectively. Similar improvement was obtained for the ductility. Full article
(This article belongs to the Special Issue New Advances in Strengthening of Structural Timber)
Show Figures

Figure 1

20 pages, 9661 KiB  
Article
Interfacial Shear Performance of Epoxy Adhesive Joints of Prefabricated Elements Made of Ultra-High-Performance Concrete
by Kun Yu, Zhongya Zhang, Yang Zou, Jinlong Jiang, Xingqi Zeng and Liang Tang
Polymers 2022, 14(7), 1364; https://doi.org/10.3390/polym14071364 - 28 Mar 2022
Cited by 12 | Viewed by 2933
Abstract
Application of ultra-high-performance concrete (UHPC) in joints can improve the impact resistance, crack resistance, and durability of structures. In this paper, the direct shear performance of ultra-high-performance concrete (UHPC) adhesive joints was experimentally studied. Twenty-four direct shear loading tests of UHPC adhesive joints [...] Read more.
Application of ultra-high-performance concrete (UHPC) in joints can improve the impact resistance, crack resistance, and durability of structures. In this paper, the direct shear performance of ultra-high-performance concrete (UHPC) adhesive joints was experimentally studied. Twenty-four direct shear loading tests of UHPC adhesive joints were carried out considering different interface types and constraint states. The failure modes and load-slip curves of different interfaces were studied. Results indicated that passive confinement could enhance the strength and ductility of the interface; the average ultimate bearing capacity of the smooth, rough, grooved, and keyway specimens with passive restraint were, respectively, increased by 11.92%, 8.91%, 11.93%, and 17.766% compared with the unrestrained ones. The passive constraint force changes with the loading and finally tends to be stable. The epoxy adhesive has high reliability as a coating for the UHPC interface. The adhesive layer is not cracked before the failure of the specimen, which is also different from the common failure mode of adhesive joints. Failure of all specimens occurred in the UHPC layer, and the convex part of the groove interface shows the UHPC matrix peeling failure; the keyway interface is the shear damage of the key-tooth root, and the rest of the keyway showed UHPC surface peeling failure. According to the failure mode, the shear capacity of UHPC keyway adhesive joints under passive restraint is mainly provided by the shear resistance of key teeth, the friction force of the joint surface, and the bonding force of the UHPC surface. The friction coefficient was determined based on the test results, and the high-precision fitting formula between the shear strength of the UHPC surface and the passive constraint force was established. According to the Mohr stress circle theory, the proposed formula for direct shear strength of UHPC bonded joints under passive constraint was established. The average ratio of the proposed UHPC adhesive joint calculation formula to the test results was 0.99, and the standard deviation was 0.027. Full article
Show Figures

Figure 1

12 pages, 3250 KiB  
Article
Flashover Voltage of Epoxy FRP Insulators with Different Surface Roughness and Groove under Nanosecond Pulses in SF6
by Zhiqiang Chen, Chengcheng Wang, Wei Jia, Le Cheng, Fan Guo, Linshen Xie, Wei Wu and Wei Chen
Energies 2022, 15(6), 2202; https://doi.org/10.3390/en15062202 - 17 Mar 2022
Cited by 5 | Viewed by 2608
Abstract
In order to further improve the insulation performance of fiber reinforce plastic (FRP) materials used in electromagnetic pulse (EMP) simulators, the flashover characteristics of FRP materials with different surface roughness and groove, i.e., those who are easily achieved and have a prominent effect, [...] Read more.
In order to further improve the insulation performance of fiber reinforce plastic (FRP) materials used in electromagnetic pulse (EMP) simulators, the flashover characteristics of FRP materials with different surface roughness and groove, i.e., those who are easily achieved and have a prominent effect, are investigated in 0.1 MPa SF6 under nanosecond pulse voltage with a rise time of 20–30 ns. The experimental results show that surfaces with different roughness have no significant influence on the flashover voltages of the FRP insulators, and both the convex grooves made of FRP and the convex grooves with nylon rings inlaid to form projections can improve the surface flashover voltage of epoxy FRP insulators under nanosecond pulse, in which the effect of the former surface is more obvious. For the insulators with convex grooves made of FRP, it is found that the root of the FRP protrusions breaks down after a number of shots with the occurrence of carbonization channels and spots, which is nonexistent for the nylon projections. Combined with the test results of surface characteristics, the surface roughness and the secondary electron emission yield (SEEY) are not key factors of flashover characteristics in SF6 under nanosecond pulse, arguably due to the fact that the energy needed for an incident electron to ionize an SF6 molecule is lower than that to excite two secondary electrons. Hence, the flashover performance cannot be improved by adjusting the surface roughness, and the flashover channel is principally governed by the macroscopic distribution of electrical field which can be changed by the convex groove. Breakdown phenomena of FRP protrusions indicate that the bulk insulation performance of resin FRP is weaker compared to pure resin because of its composite structure, as well as the impurities and voids introduced in the manufacturing process. The results are instructive for the design of FRP insulation structures in the compact EMP simulator. Full article
(This article belongs to the Special Issue Power Systems and High Voltage Engineering)
Show Figures

Figure 1

Back to TopTop