Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (154)

Search Parameters:
Keywords = grid resilience assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 30180 KiB  
Article
Evaluating Distributed Hydrologic Modeling to Assess Coastal Highway Vulnerability to High Water Tables
by Bruno Jose de Oliveira Sousa, Luiz M. Morgado and Jose G. Vasconcelos
Water 2025, 17(15), 2327; https://doi.org/10.3390/w17152327 - 5 Aug 2025
Viewed by 2
Abstract
Due to increased precipitation intensity and sea-level rise, low-lying coastal roads are increasingly vulnerable to subbase saturation. Widely applied lumped hydrological approaches cannot accurately represent time and space-varying groundwater levels in some highly conductive coastal soils, calling for more sophisticated tools. This study [...] Read more.
Due to increased precipitation intensity and sea-level rise, low-lying coastal roads are increasingly vulnerable to subbase saturation. Widely applied lumped hydrological approaches cannot accurately represent time and space-varying groundwater levels in some highly conductive coastal soils, calling for more sophisticated tools. This study assesses the suitability of the Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) for representing hydrological processes and groundwater dynamics in a unique coastal roadway setting in Alabama. A high-resolution model was developed to assess a 2 km road segment and was calibrated for hydraulic conductivity and aquifer bottom levels using observed groundwater level (GWL) data. The model configuration included a fixed groundwater tidal boundary representing Mobile Bay, a refined land cover classification, and an extreme precipitation event simulation representing Hurricane Sally. Results indicated good agreement between modeled and observed groundwater levels, particularly during short-duration high-intensity events, with NSE values reaching up to 0.83. However, the absence of dynamic tidal forcing limited its ability to replicate certain fine-scale groundwater fluctuations. During the Hurricane Sally simulation, over two-thirds of the segment remained saturated for over 6 h, and some locations exceeded 48 h of pavement saturation. The findings underscore the importance of incorporating shallow groundwater processes in hydrologic modeling for coastal roads. This replicable modeling framework may assist DOTs in identifying critical roadway segments to improve drainage infrastructure in order to increase resiliency. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 223
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

45 pages, 1090 KiB  
Review
Electric Vehicle Adoption in Egypt: A Review of Feasibility, Challenges, and Policy Directions
by Hilmy Awad, Michele De Santis and Ehab H. E. Bayoumi
World Electr. Veh. J. 2025, 16(8), 423; https://doi.org/10.3390/wevj16080423 - 28 Jul 2025
Viewed by 641
Abstract
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption [...] Read more.
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption disparities, lifecycle assessments of EV batteries, and sociocultural barriers, including gender dynamics and entrenched consumer preferences. Its primary contribution is an interdisciplinary framework that integrates technical aspects, such as grid resilience and climate-related battery degradation, with socioeconomic dimensions, providing a holistic overview of EV feasibility in Egypt tailored to Egypt’s context. Key findings reveal infrastructure limitations, inconsistent policy frameworks, and behavioral skepticism as major hurdles, and highlight the untapped potential of renewable energy integration, particularly through synergies between solar PV generation (e.g., Benban Solar Park) and EV charging infrastructure. Recommendations prioritize policy reforms (e.g., tax incentives, streamlined tariffs), solar-powered charging infrastructure expansion, public awareness campaigns, and local EV manufacturing to stimulate economic growth. The study underscores the urgency of stakeholder collaboration to transform EVs into a mainstream solution, positioning Egypt as a regional leader in sustainable mobility and equitable development. Full article
Show Figures

Figure 1

34 pages, 820 KiB  
Article
An Integrated MCDA Framework for Prioritising Emerging Technologies in the Transition from Industry 4.0 to Industry 5.0
by Witold Torbacki
Appl. Sci. 2025, 15(15), 8168; https://doi.org/10.3390/app15158168 - 23 Jul 2025
Viewed by 234
Abstract
As industrial companies transition from the Industry 4.0 stage to the more human-centric and resilient Industry 5.0 paradigm, there is a growing need for structured assessment tools to prioritize modern technologies. This paper presents an integrated multi-criteria decision analysis (MCDA) approach to support [...] Read more.
As industrial companies transition from the Industry 4.0 stage to the more human-centric and resilient Industry 5.0 paradigm, there is a growing need for structured assessment tools to prioritize modern technologies. This paper presents an integrated multi-criteria decision analysis (MCDA) approach to support the strategic assessment of technologies from three complementary perspectives: economic, organizational, and technological. The proposed model encompasses six key transformation areas and 22 technologies representing both the Industry 4.0 and 5.0 paradigms. A hybrid approach combining the DEMATEL (Decision-Making Trial and Evaluation Laboratory) and PROMETHEE II (Preference Ranking Organization Method for Enrichment Evaluation) methods is used to identify cause–effect relationships between the transformation areas and to construct technology rankings in each of the assessed perspectives. The results indicate that technologies such as the Internet of Things (IoT), cybersecurity, and supporting IT systems play a central role in the transition process. Among the Industry 5.0 technologies, hyper-personalized manufacturing, smart grids and new materials stand out. Moreover, the economic perspective emerges as the dominant assessment dimension for most technologies. The proposed analytical framework offers both theoretical input and practical decision-making support for companies planning their transformation towards Industry 5.0, enabling a stronger alignment between implemented technologies and long-term strategic goals. Full article
(This article belongs to the Special Issue Advanced Technologies for Industry 4.0 and Industry 5.0)
Show Figures

Figure 1

36 pages, 1680 KiB  
Article
Guarding Our Vital Systems: A Metric for Critical Infrastructure Cyber Resilience
by Muharman Lubis, Muhammad Fakhrul Safitra, Hanif Fakhrurroja and Alif Noorachmad Muttaqin
Sensors 2025, 25(15), 4545; https://doi.org/10.3390/s25154545 - 22 Jul 2025
Viewed by 467
Abstract
The increased occurrence and severity of cyber-attacks on critical infrastructure have underscored the need to embrace systematic and prospective approaches to resilience. The current research takes as its hypothesis that the InfraGuard Cybersecurity Framework—a capability model that measures the maturity of cyber resilience [...] Read more.
The increased occurrence and severity of cyber-attacks on critical infrastructure have underscored the need to embrace systematic and prospective approaches to resilience. The current research takes as its hypothesis that the InfraGuard Cybersecurity Framework—a capability model that measures the maturity of cyber resilience through three functional pillars, Cyber as a Shield, Cyber as a Space, and Cyber as a Sword—is an implementable and understandable means to proceed with. The model treats the significant aspects of situational awareness, active defense, risk management, and recovery from incidents and is measured using globally standardized maturity models like ISO/IEC 15504, NIST CSF, and COBIT. The contributions include multidimensional measurements of resilience, a scored scale of capability (0–5), and domain-based classification enabling organizations to assess and enhance their cybersecurity situation in a formalized manner. The framework’s applicability is illustrated in three exploratory settings of power grids, healthcare systems, and airports, each constituting various levels of maturity in resilience. This study provides down-to-earth recommendations to policymakers through the translation of the attributes of resilience into concrete assessment indicators, promoting policymaking, investment planning, and global cyber defense collaboration. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

30 pages, 1042 KiB  
Article
A Privacy-Preserving Polymorphic Heterogeneous Security Architecture for Cloud–Edge Collaboration Industrial Control Systems
by Yukun Niu, Xiaopeng Han, Chuan He, Yunfan Wang, Zhigang Cao and Ding Zhou
Appl. Sci. 2025, 15(14), 8032; https://doi.org/10.3390/app15148032 - 18 Jul 2025
Viewed by 254
Abstract
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for [...] Read more.
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for sensitive industrial data processing. In contrast to existing work that treats scheduling and privacy as separate concerns, this paper proposes a unified polymorphic heterogeneous security architecture that integrates hybrid event–time triggered scheduling with adaptive privacy-preserving arbitration, specifically designed to address the unique challenges of cloud–edge collaboration ICSs where both security resilience and privacy preservation are paramount requirements. The architecture introduces three key innovations: (1) a hybrid event–time triggered scheduling algorithm with credibility assessment and heterogeneity metrics to mitigate common-mode escape scenarios, (2) an adaptive privacy budget allocation mechanism that balances privacy protection effectiveness with system availability based on attack activity levels, and (3) a unified framework that organically integrates privacy-preserving arbitration with heterogeneous redundancy management. Comprehensive evaluations using natural gas pipeline pressure control and smart grid voltage control systems demonstrate superior performance: the proposed method achieves 100% system availability compared to 62.57% for static redundancy and 86.53% for moving target defense, maintains 99.98% availability even under common-mode attacks (102 probability), and consistently outperforms moving target defense methods integrated with state-of-the-art detection mechanisms (99.7790% and 99.6735% average availability when false data deviations from true values are 5% and 3%, respectively) across different attack detection scenarios, validating its effectiveness in defending against availability attacks and privacy leakage threats in cloud–edge collaboration environments. Full article
Show Figures

Figure 1

19 pages, 6796 KiB  
Article
Performance Assessment of Advanced Daily Surface Soil Moisture Products in China for Sustainable Land and Water Management
by Dai Chen, Zhounan Dong and Jingnan Chen
Sustainability 2025, 17(14), 6482; https://doi.org/10.3390/su17146482 - 15 Jul 2025
Viewed by 239
Abstract
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic [...] Read more.
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic Soil Moisture Monitoring Network. All products were standardized to a 0.25° × 0.25° grid in the WGS-84 coordinate system through reprojection and resampling for consistent comparison. Daily averaged station observations were matched to product pixels using a 10 km radius buffer, with the mean station value as the reference for each time series after rigorous quality control. Results reveal distinct performance rankings, with SMAP-based products, particularly the SMAP_IB descending orbit variant, achieving the lowest unbiased root mean square deviation (ubRMSD) and highest correlation with in situ data. Blended products like ESA CCI and NOAA SMOPS, alongside reanalysis datasets such as ERA5 and MERRA2, outperformed SMOS and China’s FY3 products. The SoMo.ml product showed the broadest spatial coverage and strong temporal consistency, while FY3-based products showed limitations in spatial reliability and seasonal dynamics capture. These findings provide critical insights for selecting appropriate soil moisture datasets to enhance sustainable agricultural practices, optimize water resource allocation, monitor ecosystem resilience, and support climate adaptation strategies, therefore advancing sustainable development across diverse geographical regions in China. Full article
Show Figures

Figure 1

27 pages, 4005 KiB  
Article
Quantum-Enhanced Predictive Degradation Pathway Optimization for PV Storage Systems: A Hybrid Quantum–Classical Approach for Maximizing Longevity and Efficiency
by Dawei Wang, Shuang Zeng, Liyong Wang, Baoqun Zhang, Cheng Gong, Zhengguo Piao and Fuming Zheng
Energies 2025, 18(14), 3708; https://doi.org/10.3390/en18143708 - 14 Jul 2025
Viewed by 264
Abstract
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the [...] Read more.
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the progressive efficiency loss in PV modules and battery storage, leading to suboptimal performance and reduced system longevity. To address these challenges, this paper proposes a quantum-enhanced degradation pathway optimization framework that dynamically adjusts operational strategies to extend the lifespan of PV storage systems while maintaining high efficiency. By leveraging quantum-assisted Monte Carlo simulations and hybrid quantum–classical optimization, the proposed model evaluates degradation pathways in real time and proactively optimizes energy dispatch to minimize efficiency losses due to aging effects. The framework integrates a quantum-inspired predictive maintenance algorithm, which utilizes probabilistic modeling to forecast degradation states and dynamically adjust charge–discharge cycles in storage systems. Unlike conventional optimization methods, which struggle with the complexity and stochastic nature of degradation mechanisms, the proposed approach capitalizes on quantum parallelism to assess multiple degradation scenarios simultaneously, significantly enhancing computational efficiency. A three-layer hierarchical optimization structure is introduced, ensuring real-time degradation risk assessment, periodic dispatch optimization, and long-term predictive adjustments based on PV and battery aging trends. The framework is tested on a 5 MW PV array coupled with a 2.5 MWh lithium-ion battery system, with real-world degradation models applied to reflect light-induced PV degradation (0.7% annual efficiency loss) and battery state-of-health deterioration (1.2% per 100 cycles). A hybrid quantum–classical computing environment, utilizing D-Wave’s Advantage quantum annealer alongside a classical reinforcement learning-based optimization engine, enables large-scale scenario evaluation and real-time operational adjustments. The simulation results demonstrate that the quantum-enhanced degradation optimization framework significantly reduces efficiency losses, extending the PV module’s lifespan by approximately 2.5 years and reducing battery-degradation-induced wear by 25% compared to conventional methods. The quantum-assisted predictive maintenance model ensures optimal dispatch strategies that balance energy demand with system longevity, preventing excessive degradation while maintaining grid reliability. The findings establish a novel paradigm in degradation-aware energy optimization, showcasing the potential of quantum computing in enhancing the sustainability and resilience of PV storage systems. This research paves the way for the broader integration of quantum-based decision-making in renewable energy infrastructure, enabling scalable, high-performance optimization for future energy systems. Full article
Show Figures

Figure 1

21 pages, 3422 KiB  
Article
Techno-Economic Optimization of a Grid-Tied PV/Battery System in Johannesburg’s Subtropical Highland Climate
by Webster J. Makhubele, Bonginkosi A. Thango and Kingsley A. Ogudo
Sustainability 2025, 17(14), 6383; https://doi.org/10.3390/su17146383 - 11 Jul 2025
Viewed by 399
Abstract
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) [...] Read more.
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) and battery storage system designed for a commercial facility located in Johannesburg, South Africa—an area characterized by a subtropical highland climate. We conducted the analysis using the HOMER Grid software and evaluated the performance of the proposed PV/battery system against the baseline grid-only configuration. Simulation results indicate that the optimal systems, comprising 337 kW of flat-plate PV and 901 kWh of lithium-ion battery storage, offers a significant reduction in electricity expenditure, lowering the annual utility cost from $39,229 to $897. The system demonstrates a simple payback period of less than two years and achieves a net present value (NPV) of approximately $449,491 over a 25-year project lifespan. In addition to delivering substantial cost savings, the proposed configuration also enhances energy resilience. Sensitivity analyses were conducted to assess the impact of variables such as inflation rate, discount rate, and load profile fluctuations on system performance and economic returns. The results affirm the suitability of hybrid grid-tied PV/battery systems for cost-effective, sustainable urban energy solutions in climates with high solar potential. Full article
Show Figures

Figure 1

39 pages, 3301 KiB  
Review
A Systematic Review and Meta-Analysis of Model Predictive Control in Microgrids: Moving Beyond Traditional Methods
by Elnaz Yaghoubi, Elaheh Yaghoubi, Mohammad Reza Maghami, Javad Rahebi, Mehdi Zareian Jahromi, Raheleh Ghadami (Melisa Rahebi) and Ziyodulla Yusupov
Processes 2025, 13(7), 2197; https://doi.org/10.3390/pr13072197 - 9 Jul 2025
Viewed by 668
Abstract
Microgrids are gaining considerable attention as a promising solution for integrating distributed energy resources and enhancing grid resilience. Model predictive control (MPC) has emerged as a powerful control strategy for microgrids due to its ability to handle complex dynamics and optimization problems. This [...] Read more.
Microgrids are gaining considerable attention as a promising solution for integrating distributed energy resources and enhancing grid resilience. Model predictive control (MPC) has emerged as a powerful control strategy for microgrids due to its ability to handle complex dynamics and optimization problems. This study aims to conduct a comprehensive assessment of MPC applications and evaluate their overall effectiveness across various microgrid functionalities. Previous studies have not collectively examined MPC and have not explored its advantages and disadvantages in the microgrid. This study systematically categorizes and addresses this gap in the existing literature. An extensive list of suitable research papers was compiled from the Web of Science and analyzed, considering the method of the studies, main focus and objectives, publication year, and findings. Moreover, this research incorporates co-occurrence keyword analysis, covering MPC applications, systematic reviews, microgrids, and review articles. The visualization and analysis of the data obtained from the Web of Science database were conducted using VOS viewer. This discussion includes approaches that help electrical engineers evaluate the benefits and disadvantages of MPC within the microgrid setup. This knowledge enables electrical practitioners to select the appropriate methods for providing a resilient and reliable ecosystem. Full article
Show Figures

Figure 1

38 pages, 3666 KiB  
Systematic Review
A Systematic Literature Review on Li-Ion BESSs Integrated with Photovoltaic Systems for Power Supply to Auxiliary Services in High-Voltage Power Stations
by Sergio Pires Pimentel, Marcelo Nogueira Bousquet, Tiago Alves Barros Rosa, Leovir Cardoso Aleluia Junior, Enes Goncalves Marra, Jose Wilson Lima Nerys and Luciano Coutinho Gomes
Energies 2025, 18(13), 3544; https://doi.org/10.3390/en18133544 - 4 Jul 2025
Viewed by 382
Abstract
The integration of lithium-ion (Li-ion) battery energy storage systems (LiBESSs) with photovoltaic (PV) generation offers a promising solution for powering auxiliary services (ASs) in high-voltage power stations. This study conducts a systematic literature review (SLR) to evaluate the feasibility, benefits, and challenges of [...] Read more.
The integration of lithium-ion (Li-ion) battery energy storage systems (LiBESSs) with photovoltaic (PV) generation offers a promising solution for powering auxiliary services (ASs) in high-voltage power stations. This study conducts a systematic literature review (SLR) to evaluate the feasibility, benefits, and challenges of this integration. The proposed SLR complies with the PRISMA 2020 statement, and it is also registered on the international PROSPERO platform (ID 1073599). The selected methodology includes the following key steps: definition of the research questions; search strategy development; selection criteria of the studies; quality assessment; data extraction and synthesis; and discussion of the results. Through a comprehensive analysis of scientific publications from 2013 to 2024, trends, advancements, and research gaps are identified. The methodology follows a structured review framework, including data collection, selection criteria, and evaluation of technical feasibility. From 803 identified studies, 107 were eligible in accordance with the assessed inclusion criteria. Then, a custom study impact factor (SIF) framework selected 5 out of 107 studies as the most representative and assertive ones on the topics of this SLR. The findings indicate that Li-ion BESSs combined with PV systems enhance reliability, reduce reliance on conventional sources, and improve grid resilience, particularly in remote or constrained environments. The group of reviewed studies discuss optimization models and multi-objective strategies for system sizing and operation, along with practical case studies validating their effectiveness. Despite these advantages, challenges related to cost, regulatory frameworks, and performance variability remain. The study concludes that further experimental validations, pilot-scale implementations, and assessment of long-term economic impacts are necessary to accelerate the adoption of BESS-PV systems in high-voltage power substations. This study was funded by the R&D program of the Brazilian National Electric Energy Agency (ANEEL) via project number PD-07351-0001/2022. Full article
Show Figures

Figure 1

15 pages, 5107 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Aerosol Optical Depth in Zhejiang Province: Insights from Land Use Dynamics and Transportation Networks Based on Remote Sensing
by Qi Wang, Ben Wang, Wanlin Kong, Jiali Wu, Zhifeng Yu, Xiwen Wu and Xiaohong Yuan
Sustainability 2025, 17(13), 6126; https://doi.org/10.3390/su17136126 - 3 Jul 2025
Viewed by 300
Abstract
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road [...] Read more.
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road network density metrics (2014–2020), to investigate the spatiotemporal evolution of AOD in Zhejiang Province and its synergistic correlations with urbanization patterns and transportation infrastructure. By integrating MODIS_1KM AOD product, grid-based road network density mapping, land use dynamic degree modeling, and transfer matrix analysis, this study systematically evaluates the interdependencies among aerosol loading, impervious surface expansion, and transportation network intensification. The results indicate that during the study period (2000–2020), the provincial AOD level shows a significant declining trend, with obvious spatial heterogeneity: the AOD values in eastern coastal industrial zones and urban agglomerations continue to increase, with lower values dominating southwestern forested highlands. Meanwhile, statistical analyses confirm highly positive correlations between AOD, impervious surface coverage, and road network density, emphasizing the dominant role of anthropogenic activities in aerosol accumulation. These findings provide actionable insights for enhancing land-use zoning, minimizing vehicular emissions, and developing spatially targeted air quality management strategies in rapidly urbanizing regions. This study provides a solid scientific foundation for advancing environmental sustainability by supporting policy development that balances urban expansion and air quality. It contributes to building more sustainable and resilient cities in Zhejiang Province. Full article
Show Figures

Figure 1

46 pages, 7883 KiB  
Article
Energy Transition Framework for Nearly Zero-Energy Ports: HRES Planning, Storage Integration, and Implementation Roadmap
by Dimitrios Cholidis, Nikolaos Sifakis, Alexandros Chachalis, Nikolaos Savvakis and George Arampatzis
Sustainability 2025, 17(13), 5971; https://doi.org/10.3390/su17135971 - 29 Jun 2025
Viewed by 427
Abstract
Ports are vital nodes in global trade networks but are also significant contributors to greenhouse gas emissions. Their transition toward sustainable, nearly zero-energy operations require comprehensive and structured strategies. This study proposes a practical and scalable framework to support the energy decarbonization of [...] Read more.
Ports are vital nodes in global trade networks but are also significant contributors to greenhouse gas emissions. Their transition toward sustainable, nearly zero-energy operations require comprehensive and structured strategies. This study proposes a practical and scalable framework to support the energy decarbonization of ports through the phased integration of hybrid renewable energy systems (HRES) and energy storage systems (ESS). Emphasizing a systems-level approach, the framework addresses key aspects such as energy demand assessment, resource potential evaluation, HRES configuration, and ESS sizing, while incorporating load characterization protocols and decision-making thresholds for technology deployment. Special consideration is given to economic performance, particularly the minimization of the Levelized Cost of Energy (LCOE), alongside efforts to meet energy autonomy and operational resilience targets. In parallel, the framework integrates digital tools, including smart grid infrastructure and digital shadow technologies, to enable real-time system monitoring, simulation, and long-term optimization. It also embeds mechanisms for regulatory compliance and continuous adaptation to evolving standards. To validate its applicability, the framework is demonstrated using a representative case study based on a generic port profile. The example illustrates the transition process from conventional energy models to a sustainable port ecosystem, confirming the framework’s potential as a decision-making tool for port authorities, engineers, and policymakers aiming to achieve effective, compliant, and future-proof energy transitions in maritime infrastructure. Full article
Show Figures

Figure 1

14 pages, 2952 KiB  
Article
TreeGrid: A Spatial Planning Tool Integrating Tree Species Traits for Biodiversity Enhancement in Urban Landscapes
by Shrey Rakholia, Reuven Yosef, Neelesh Yadav, Laura Karimloo, Michaela Pleitner and Ritvik Kothari
Animals 2025, 15(13), 1844; https://doi.org/10.3390/ani15131844 - 22 Jun 2025
Viewed by 545
Abstract
Urbanization, habitat fragmentation, and intensifying urban heat island (UHI) effects accelerate biodiversity loss and diminish ecological resilience in cities, particularly in climate-vulnerable regions. To address these challenges, we developed TreeGrid, a functionality-based spatial tree planning tool designed specifically for urban settings in the [...] Read more.
Urbanization, habitat fragmentation, and intensifying urban heat island (UHI) effects accelerate biodiversity loss and diminish ecological resilience in cities, particularly in climate-vulnerable regions. To address these challenges, we developed TreeGrid, a functionality-based spatial tree planning tool designed specifically for urban settings in the Northern Plains of India. The tool integrates species trait datasets, ecological scoring metrics, and spatial simulations to optimize tree placement for enhanced ecosystem service delivery, biodiversity support, and urban cooling. Developed within an R Shiny framework, TreeGrid dynamically computes biodiversity indices, faunal diversity potential, canopy shading, carbon sequestration, and habitat connectivity while simulating localized reductions in land surface temperature (LST). Additionally, we trained a deep neural network (DNN) model using tool-generated data to predict bird habitat suitability across diverse urban contexts. The tool’s spatial optimization capabilities are also applicable to post-fire restoration planning in wildland–urban interfaces by guiding the selection of appropriate endemic species for revegetation. This integrated framework supports the development of scalable applications in other climate-impacted regions, highlighting the utility of participatory planning, predictive modeling, and ecosystem service assessments in designing biodiversity-inclusive and thermally resilient urban landscapes. Full article
Show Figures

Figure 1

21 pages, 1205 KiB  
Article
Development of an Innovative Landfill Gas Purification System in Latvia
by Laila Zemite, Davids Kronkalns, Andris Backurs, Leo Jansons, Nauris Eglitis, Patrick Cnubben and Sanda Lapuke
Sustainability 2025, 17(13), 5691; https://doi.org/10.3390/su17135691 - 20 Jun 2025
Viewed by 404
Abstract
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national [...] Read more.
The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national strategies to enhance circularity, untreated LFG is underutilized due to inadequate purification infrastructure, particularly in meeting biomethane standards. This study addressed this gap by proposing and evaluating an innovative, multistep LFG purification system tailored to Latvian conditions, with the aim of enabling the broader use of LFG for energy cogeneration and potentially biomethane injection. The research objective was to design, describe, and preliminarily assess a pilot-scale LFG purification prototype suitable for deployment at Latvia’s largest landfill facility—Landfill A. The methodological approach combined chemical composition analysis of LFG, technical site assessments, and engineering modelling of a five-step purification system, including desulfurization, cooling and moisture removal, siloxane filtration, pumping stabilization, and activated carbon treatment. The system was designed for a nominal gas flow rate of 1500 m3/h and developed with modular scalability in mind. The results showed that raw LFG from Landfill A contains high concentrations of hydrogen sulfide, siloxanes, and volatile organic compounds (VOCs), far exceeding permissible thresholds for biomethane applications. The designed prototype demonstrated the technical feasibility of reducing hydrogen sulfide (H2S) concentrations to <7 mg/m3 and siloxanes to ≤0.3 mg/m3, thus aligning the purified gas with EU biomethane quality requirements. Infrastructure assessments confirmed that existing electricity, water, and sewage capacities at Landfill A are sufficient to support the system’s operation. The implications of this research suggest that properly engineered LFG purification systems can transform landfills from passive waste sinks into active energy resources, aligning with the EU Green Deal goals and enhancing local energy resilience. It is recommended that further validation be carried out through long-term pilot operation, economic analysis of gas recovery profitability, and adaptation of the system for integration with national gas grids. The prototype provides a transferable model for other Baltic and Eastern European contexts, where LFG remains an underexploited asset for sustainable energy transitions. Full article
Show Figures

Figure 1

Back to TopTop