Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = green engineered cementitious composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 12427 KiB  
Article
The Strength and Fracture Characteristics of One-Part Strain-Hardening Green Alkali-Activated Engineered Composites
by Khandaker M. Anwar Hossain and Dhruv Sood
Materials 2023, 16(14), 5077; https://doi.org/10.3390/ma16145077 - 18 Jul 2023
Cited by 4 | Viewed by 1678
Abstract
Alkali-activated engineered composites (AAECs) are cement-free composites developed using alkali activation technology, which exhibit strain hardening and multiple micro-cracking like conventional engineered cementitious composites (ECCs). Such AAECs are developed in this study by incorporating 2% v/v polyvinyl alcohol (PVA) fibers into [...] Read more.
Alkali-activated engineered composites (AAECs) are cement-free composites developed using alkali activation technology, which exhibit strain hardening and multiple micro-cracking like conventional engineered cementitious composites (ECCs). Such AAECs are developed in this study by incorporating 2% v/v polyvinyl alcohol (PVA) fibers into alkali-activated mortars (AAMs) produced using binary/ternary combinations of fly ash class C (FA-C), fly ash class F (FA-F), and ground-granulated blast furnace slag (GGBFS) with powder-form alkaline reagents and silica sand through a one-part mixing method under ambient curing conditions. The mechanical and microstructural characteristics of eight AAECs are investigated to characterize their strain-hardening performance based on existing (stress and energy indices) and newly developed tensile/flexural ductility indices. The binary (FA-C + GGBFS) AAECs obtained higher compressive strengths (between 48 MPa and 52 MPa) and ultrasonic pulse velocities (between 3358 m/s and 3947 m/s) than their ternary (FA-C + FA-F + GGBFS) counterparts. The ternary AAECs obtained a higher fracture energy than their binary counterparts. The AAECs incorporating reagent 2 (Ca(OH)2: Na2SO4 = 2.5:1) obtained a greater fracture energy and compressive strengths than their counterparts with reagent 1 (Ca(OH)2: Na2SiO3.5H2O = 1:2.5), due to additional C-S-H gel formation, which increased their energy absorption for crack propagation through superior multiple-cracking behavior. A lower fracture and crack-tip toughness facilitated the development of enhanced flexural strength characteristics with higher flexural strengths (ranging from 5.3 MPa to 11.3 MPa) and a higher energy ductility of the binary AAMs compared to their ternary counterparts. The tensile stress relaxation process was relatively gradual in the binary AAECs, owing to the formation of a more uniform combination of reaction products (C-S-H/C-A-S-H) rather than a blend of amorphous (N-C-A-S-H/N-A-S-H) and crystalline (C-A-S-H/C-S-H) binding phases in the case of the ternary AAECs. All the AAECs demonstrated tensile strain-hardening characteristics at 28 days, with significant improvements from 28% to 100% in the maximum bridging stresses for mixes incorporating 40% to 45% GGBFS at 365 days. This study confirmed the viability of producing green cement-free strain-hardening alkali-activated composites with powder-form reagents, with satisfactory mechanical characteristics under ambient conditions. Full article
(This article belongs to the Special Issue Preparation and Properties of New Cementitious Materials)
Show Figures

Figure 1

17 pages, 3427 KiB  
Article
Recycling Mussel Shells as Secondary Sources in Green Construction Materials: A Preliminary Assessment
by Rosanna Leone, Adriana Calà, Marinélia N. Capela, Simona Colajanni, Tiziana Campisi and Manfredi Saeli
Sustainability 2023, 15(4), 3547; https://doi.org/10.3390/su15043547 - 15 Feb 2023
Cited by 16 | Viewed by 11746
Abstract
This paper reports the development of novel green bio-composite mortars obtained by reusing mussel shells, a waste from the fish canning industry, as recycled aggregate, used for the first time in total substitution to the traditional sand. It suggests that this is a [...] Read more.
This paper reports the development of novel green bio-composite mortars obtained by reusing mussel shells, a waste from the fish canning industry, as recycled aggregate, used for the first time in total substitution to the traditional sand. It suggests that this is a valid alternative to their usual disposal in landfills because the organic matter is potentially dangerous to humans and the environment. Different waste-based cementitious mixes were tested and compared to a traditional OPC mortar. The manufacturing process was performed at ambient conditions (20 °C, 65% RH) with highly sustainable results and consisted of simple operative steps reproducible in a real building site. The engineering performance was investigated to preliminarily assess the novel material potentials in construction. The main results showed that recycling mussel shells as aggregate while considerably decreasing the mechanical resistance (up to 60% in bending and 50% in compression), mixes could still find proper building applications (either structural, light partition, and plastering) according to the relevant standards. Moreover, the bulk density resulted up to 30% lower and the energy behavior was improved up to 40%, making the developed mortars highly suitable for promising energy-saving uses. Finally, the waste recycling about halves the materials cost and could also grant further financial saving for the fish industry. To conclude, the large amount of reused bio-waste not only represents a valid alternative to their usual disposal in landfills, but also makes the considered mortars suitable for building applications and promising candidates for the Minimum Environmental Criteria certification, in light of the EU Green Transition, and in line with the principles of the circular economy. Full article
Show Figures

Figure 1

31 pages, 10504 KiB  
Review
A Comprehensive Review of Types, Properties, Treatment Methods and Application of Plant Fibers in Construction and Building Materials
by Muhammad Nasir Amin, Waqas Ahmad, Kaffayatullah Khan and Ayaz Ahmad
Materials 2022, 15(12), 4362; https://doi.org/10.3390/ma15124362 - 20 Jun 2022
Cited by 47 | Viewed by 9321
Abstract
Sustainable development involves the usage of alternative sustainable materials in order to sustain the excessive depletion of natural resources. Plant fibers, as a “green” material, are progressively gaining the attention of various researchers in the field of construction for their potential use in [...] Read more.
Sustainable development involves the usage of alternative sustainable materials in order to sustain the excessive depletion of natural resources. Plant fibers, as a “green” material, are progressively gaining the attention of various researchers in the field of construction for their potential use in composites for stepping towards sustainable development. This study aims to provide a scientometric review of the summarized background of plant fibers and their applications as construction and building materials. Studies from the past two decades are summarized. Quantitative assessment of research progress is made by using connections and maps between bibliometric data that are compiled for the analysis of plant fibers using Scopus. Data refinement techniques are also used. Plant fibers are potentially used to enhance the mechanical properties of a composite. It is revealed from the literature that plant-fiber-reinforced composites have comparable properties in comparison to composites reinforced with artificial/steel fibers for civil engineering applications, such as construction materials, bridge piers, canal linings, soil reinforcement, pavements, acoustic treatment, insulation materials, etc. However, the biodegradable nature of plant fibers is still a hindrance to their application as a structural material. For this purpose, different surface and chemical treatment methods have been proposed in past studies to improve their durability. It can be surmised from the gathered data that the compressive and flexural strengths of plant-fiber-reinforced cementitious composites are increased by up to 43% and 67%, respectively, with respect to a reference composite. In the literature, alkaline treatment has been reported as an effective and economical method for treating plant fibers. Environmental degradation due to excessive consumption of natural resources and fossil fuels for the construction industry, along with the burning of waste plant fibers, can be reduced by incorporating said fibers in cementitious composites to reduce landfill pollution and, ultimately, achieve sustainable development. Full article
Show Figures

Figure 1

20 pages, 8388 KiB  
Article
Eco-Friendly, High-Ductility Slag/Fly-Ash-Based Engineered Cementitious Composite (ECC) Reinforced with PE Fibers
by Eskinder Desta Shumuye, Jie Liu, Weiwen Li and Zike Wang
Polymers 2022, 14(9), 1760; https://doi.org/10.3390/polym14091760 - 26 Apr 2022
Cited by 14 | Viewed by 3409
Abstract
Engineered cementitious composites (ECCs) are a special class of ultra-ductile fiber-reinforced cementitious composites containing a significant amount of short discontinuous fibers. The distinctive tensile strain-hardening behavior of ECCs is the result of a systematic design based on the micromechanics of the fiber, matrix, [...] Read more.
Engineered cementitious composites (ECCs) are a special class of ultra-ductile fiber-reinforced cementitious composites containing a significant amount of short discontinuous fibers. The distinctive tensile strain-hardening behavior of ECCs is the result of a systematic design based on the micromechanics of the fiber, matrix, and fiber–matrix interface. However, ECCs require extensive cement content, which is inconsistent with the goal of sustainable and green building materials. Consequently, the objective of this study is to investigate the mechanical performance of slag/fly-ash-based engineered cementitious composites (ECCs) reinforced with polyethylene (PE) fiber under axial compressive loading, as well as direct tensile and flexural strength tests. The composites’ microstructure and mineralogical composition were analyzed using images obtained from scanning electron microscopy (SEM), X-ray energy diffraction spectroscopy (EDS), X-ray powder diffraction (XRD), and X-ray fluorescence (XRF). The experimental results reveal that a slag-containing composite mixture shows strain-hardening behavior and comparable ductility properties to those of fly-ash-based composite mixtures. A ternary system of binder materials with 5% and 15% slag can increase the compressive strength of ECC by 3.5% and 34.9%, respectively, compared to slag-free ECC composite. Moreover, the microstructural results show that the slag-based cementitious matrix has a more closely cross-linked and dense microstructure at the matrix–aggregate interface. In addition, the concentration of particles on the surface of the fibers was higher in the slag-based cementitious composites than in the fly ash-based composite. This supports the concept that there is a stronger bonding between the fibers and matrix in the slag-based cementitious matrix than in fly-ash-based matrix. Full article
(This article belongs to the Special Issue Structural Reinforced Polymer Composites)
Show Figures

Figure 1

24 pages, 11289 KiB  
Article
Green-Engineered Cementitious Composite Production with High-Strength Synthetic Fiber and Aggregate Replacement
by Chaoshu Fu, Mingzhao Chen, Rongxin Guo and Rongqing Qi
Materials 2022, 15(9), 3047; https://doi.org/10.3390/ma15093047 - 22 Apr 2022
Cited by 16 | Viewed by 2576
Abstract
Engineered cementitious composites (ECCs) are potentially useful structural reinforcement and repair materials. However, owing to their high costs and carbon emissions, they are not used extensively. To control these carbon emissions and costs, recycled fly ash cenospheres (FACs) and high-strength polyethylene (PE) fibers [...] Read more.
Engineered cementitious composites (ECCs) are potentially useful structural reinforcement and repair materials. However, owing to their high costs and carbon emissions, they are not used extensively. To control these carbon emissions and costs, recycled fly ash cenospheres (FACs) and high-strength polyethylene (PE) fibers are used here to explore the possibility of developing green lightweight ECCs (GLECCs). A series of experiments was conducted to test the physical and mechanical properties of the developed GLECC and to evaluate the possibility of developing an GLECC. The crack width development of the GLECC was also analyzed using the digital image correlation method. The experimental results indicate the following: (1) The increase in FAC content and the decrease in PE content worsened the performance of GLECCs, but the resulting GLECCs still had significant strain-hardening properties; (2) The performance and costs of GLECCs can be balanced by adjusting the amount of FAC and PE. The maximum amount of FACs attainable is 0.45 (FAC/binder), and the required amount of PE fibers can be reduced to 1%. As a result, the cost was reduced by 40% and the carbon emission was reduced by 36%, while the compressive strength was greater than 30 MPa, the tensile strength was greater than 3.5 MPa, and the tensile strain was nearly 3%. (3) The width of the crack was positively correlated with the FAC content and negatively correlated with the fiber content. In the 0.8% strain range, the average crack width can be controlled to within 100 μm and the maximum crack width can be controlled to within 150 μm, with the performance still meeting the requirements of many applications. Full article
(This article belongs to the Special Issue Carbon Peaking and Carbon Neutrality in the Cement-Based Materials)
Show Figures

Figure 1

22 pages, 10955 KiB  
Article
Effect of Fiber Content on the Mechanical Properties of Engineered Cementitious Composites with Recycled Fine Aggregate from Clay Brick
by Zhanqi Cheng, Wenhao Yan, Zhibo Sui, Jiyu Tang, Chengfang Yuan, Liusheng Chu and Hu Feng
Materials 2021, 14(12), 3272; https://doi.org/10.3390/ma14123272 - 13 Jun 2021
Cited by 21 | Viewed by 2799
Abstract
In this study, recycled fine aggregate (RFA), also known as recycled brick micro-powder (RBM), was used to completely replace quartz sand for the preparation of green, low-cost ecological engineered cementitious composites (ECO-ECC). RFA was used to replace ultrafine silica sand in the range [...] Read more.
In this study, recycled fine aggregate (RFA), also known as recycled brick micro-powder (RBM), was used to completely replace quartz sand for the preparation of green, low-cost ecological engineered cementitious composites (ECO-ECC). RFA was used to replace ultrafine silica sand in the range of 0–100%. Firstly, the optimal replacement rate of RFA was determined, and the test results showed that the ECO-ECC prepared by fully replacing quartz sand with RFA as fine aggregate had strain hardening and multiple cracks, and the tensile strain of the specimens could reach 3%. Then the effects of fiber volume fraction and size effect on the mechanical properties of ECO-ECC were systematically investigated. The results showed that the fiber volume fraction has some influence on the mechanical properties of ECO-ECC. With the increase of fiber volume fraction, the ultimate deflection of the material keeps increasing up to 44.87 mm and the ultimate strain up to 3.46%, with good ductility and toughness. In addition, the compressive strength of the material has a good size effect, and there is a good linear relationship between different specimen sizes and standard sizes. It provides a good basis for engineering applications. Microscopic experimental results also showed that fibers play an important bridging role in the material, and the fiber pull-out and pull-break damage effects are significant. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 8135 KiB  
Article
Using Green Supplementary Materials to Achieve More Ductile ECC
by Yichao Wang, Zhigang Zhang, Jiangtao Yu, Jianzhuang Xiao and Qingfeng Xu
Materials 2019, 12(6), 858; https://doi.org/10.3390/ma12060858 - 14 Mar 2019
Cited by 57 | Viewed by 4471
Abstract
To improve the greenness and deformability of engineered cementitious composites (ECC), recycled powder (RP) from construction and demolition waste with an average size of 45 μm and crumb rubber (CR) of two particle sizes (40CR and 80CR) were used as supplements in the [...] Read more.
To improve the greenness and deformability of engineered cementitious composites (ECC), recycled powder (RP) from construction and demolition waste with an average size of 45 μm and crumb rubber (CR) of two particle sizes (40CR and 80CR) were used as supplements in the mix. In the present study, fly ash and silica sand used in ECC were replaced by RP (50% and 100% by weight) and CR (13% and 30% by weight), respectively. The tension test and compression test demonstrated that RP and CR incorporation has a positive effect on the deformability of ECC, especially on the tensile strain capacity. The highest tensile strain capacity was up to 12%, which is almost 3 times that of the average ECC. The fiber bridging capacity obtained from a single crack tension test and the matrix fracture toughness obtained from 3-point bending were used to analyze the influence of RP and CR at the meso-scale. It is indicated that the replacement of sand by CR lowers the matrix fracture toughness without decreasing the fiber bridging capacity. Accordingly, an explanation was achieved for the exceeding deformability of ECC incorporated with RP and CR based on the pseudo-strain hardening (PSH) index. Full article
Show Figures

Figure 1

32 pages, 3109 KiB  
Article
Structural Performance of Polymer Fiber Reinforced Engineered Cementitious Composites Subjected to Static and Fatigue Flexural Loading
by Mohamed A.A. Sherir, Khandaker M.A. Hossain and Mohamed Lachemi
Polymers 2015, 7(7), 1299-1330; https://doi.org/10.3390/polym7071299 - 14 Jul 2015
Cited by 57 | Viewed by 7298
Abstract
This paper presents the influence of silica sand, local crushed sand and different supplementary cementing materials (SCMs) to Portland cement (C) ratio (SCM/C) on the flexural fatigue performance of engineered cementitious composites (ECCs). ECC is a micromechanically-based designed high-performance polymer fiber reinforced concrete [...] Read more.
This paper presents the influence of silica sand, local crushed sand and different supplementary cementing materials (SCMs) to Portland cement (C) ratio (SCM/C) on the flexural fatigue performance of engineered cementitious composites (ECCs). ECC is a micromechanically-based designed high-performance polymer fiber reinforced concrete with high ductility which exhibits strain-hardening and micro-cracking behavior in tension and flexure. The relative high cost remains an obstacle for wider commercial use of ECC. The replacement of cement by SCMs, and the use of local sand aggregates can lower cost and enhance greenness of the ECC. The main variables of this study were: type and size of aggregates (local crushed or standard silica sand), type of SCMs (fly ash “FA” or slag), SCM/cement ratio of 1.2 or 2.2, three fatigue stress levels and number of fatigue cycles up to 1 million. The study showed that ECC mixtures produced with crushed sand (with high volume of fly ash and slag) exhibited strain hardening behavior (under static loading) with deformation capacities comparable with those made with silica sand. Class F-fly ash combined with crushed sand was the best choice (compared to class CI fly ash and slag) in order to enhance the ECC ductility with slag–ECC mixtures producing lowest deflection capacity. FA–ECC mixtures with silica sand developed more damage under fatigue loading due to higher deflection evolution than FA–ECC mixtures with crushed sand. Full article
Show Figures

Graphical abstract

Back to TopTop