Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = gray matter–element analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8189 KiB  
Article
The Key Controlling Factors and Mechanisms for the Formation of Sandstone-Type Uranium Deposits in the Central Part of the Ulanqab Depression, Erlian Basin
by Yang Liu, Hu Peng, Ning Luo, Xiaolin Yu, Ming Li and Bo Ji
Minerals 2025, 15(7), 688; https://doi.org/10.3390/min15070688 - 27 Jun 2025
Viewed by 332
Abstract
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, [...] Read more.
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, the analysis of sedimentary debris components, environmentally sensitive parameters, and elemental geochemical characteristics. The formation mechanisms and controlling factors of interlayer oxidation zones were investigated, along with uranium mineralization patterns. Research findings reveal that the sandbodies in the study area primarily consist of red sandstone, yellow sandstone, gray ore-bearing sandstone, and primary gray sandstone, representing strong oxidation zones, weak oxidation zones, transitional zones, and reduction zones, respectively. Although the mineral debris content shows minimal variation among different zones, feldspar dissolution is more prevalent in oxidized zones. During interlayer oxidation, environmentally sensitive parameters exhibit an ascending trend from strong oxidation zones through weak oxidation zones and reduction zones to mineralized transitional zones. Four transition metal elements (Co, Ni, Zn, and Mo) demonstrate enrichment in mineralized transitional zones. The development of interlayer oxidation zones is directly controlled by reservoir heterogeneity and sedimentary environments. Oxidation subzones primarily occur in sandbodies with moderate thickness (40–80 m), sand content ratios of 40%–80%, and 2–10 or 10–18 mudstone barriers (approximately 20 m thick), mainly in braided river channels and channel margin deposits. Reduction zones develop in thicker sandbodies (~100 m) with higher sand contents (~80%), fewer mudstone barriers (2–8 layers), greater thickness (40–80 m), and predominantly channel margin deposits. Transitional zones mainly occur in braided distributary channels and floodplain deposits. When oxygen-bearing uranium fluids infiltrate reservoirs, oxygen reacts with reductants like organic matter, whereFe2+ oxidizes to Fe3+, S2− reacts with oxygen, and U4+ oxidizes to U6+, migrating as uranyl complexes. As oxygen depletes, Fe3+ reduces to Fe2+, combining with S2− to form pyrite between mineral grains. Uranyl complexes reduce to precipitate as pitchblende, while some U4+ reacts with SiO44−, forming coffinite, occurring as colloids around quartz debris or pyrite. The concurrent enrichment of certain transition metal elements occurs during this process. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

18 pages, 7563 KiB  
Article
Quantitative Analysis Using PMOD and FreeSurfer for Three Types of Radiopharmaceuticals for Alzheimer’s Disease Diagnosis
by Hyun Jin Yoon, Daye Yoon, Sungmin Jun, Young Jin Jeong and Do-Young Kang
Algorithms 2025, 18(2), 57; https://doi.org/10.3390/a18020057 - 21 Jan 2025
Viewed by 1068
Abstract
In amyloid brain PET, after parcellation using the finite element method (FEM)-based algorithm FreeSurfer and voxel-based algorithm PMOD, SUVr examples can be extracted and compared. This study presents the classification SUVr threshold in PET images of F-18 florbetaben (FBB), F-18 flutemetamol (FMM), and [...] Read more.
In amyloid brain PET, after parcellation using the finite element method (FEM)-based algorithm FreeSurfer and voxel-based algorithm PMOD, SUVr examples can be extracted and compared. This study presents the classification SUVr threshold in PET images of F-18 florbetaben (FBB), F-18 flutemetamol (FMM), and F-18 florapronol (FPN) and compares and analyzes the classification performance according to computational algorithm in each brain region. PET images were co-registered after the generated MRI was registered with standard template information. Using MATLAB script, SUVr was calculated using the built-in parcellation number labeled in the brain region. PMOD and FreeSurfer with different algorithms were used to load the PET image, and after registration in MRI, it was normalized to the MRI template. The volume and SUVr of the individual gray matter space region were calculated using an automated anatomical labeling atlas. The SUVr values of eight regions of the frontal cortex (FC), lateral temporal cortex (LTC), mesial temporal cortex (MTC), parietal cortex (PC), occipital cortex (OC), anterior and posterior cingulate cortex (GCA, GCP), and composite were calculated. After calculating the correlation of SUVr using the FreeSurfer and PMOD algorithms and calculating the AUC for amyloid-positive/negative subjects, the classification ability was calculated, and the SVUr threshold was calculated using the Youden index. The correlation coefficients of FreeSurfer and PMOD SUVr calculations of the eight regions of the brain cortex were FBB (0.95), FMM (0.94), and FPN (0.91). The SUVr threshold was SUVr(LTC,min) = 1.264 and SUVr(THA,max) = 1.725 when calculated using FPN-FreeSurfer, and SUVr(MTC,min) = 1.093 and SUVr(MCT,max) = 1.564 when calculated using FPN-PMOD. The AUC comparison showed that there was no statistically significant difference (p > 0.05) in the SUVr classification results using the three radiopharmaceuticals, specifically for the LTC and OC regions in the PMOD analysis, and the LTC and PC regions in the FreeSurfer analysis. The SUVr calculation using PMOD (voxel-based algorithm) has a strong correlation with the calculation using FreeSurfer (FEM-based algorithm); therefore, they complement each other. Quantitative classification analysis with high accuracy is possible using the suggested SUVr threshold. The SUVr classification performance was good in the order of FMM, FBB, and FPN, and showed a good classification performance in the LTC region regardless of the type of radiotracer and analysis algorithm. Full article
(This article belongs to the Special Issue Algorithms in Data Classification (2nd Edition))
Show Figures

Figure 1

18 pages, 60562 KiB  
Article
Microstructure and Wear Resistance of Fe3Al Coating on Grey Cast Iron Prepared via Direct Energy Deposition
by Hossein Rajaei, Sasan Amirabdollahian, Cinzia Menapace, Giovanni Straffelini and Stefano Gialanella
Lubricants 2023, 11(11), 477; https://doi.org/10.3390/lubricants11110477 - 5 Nov 2023
Cited by 1 | Viewed by 2340
Abstract
In this study, the potential of Fe3Al coating material as an environmentally friendly alternative to coatings containing critical elements for brake discs was investigated. A buffer layer of Cr–Mo steel (Ferro 55) that was about 500 µm thick was applied on [...] Read more.
In this study, the potential of Fe3Al coating material as an environmentally friendly alternative to coatings containing critical elements for brake discs was investigated. A buffer layer of Cr–Mo steel (Ferro 55) that was about 500 µm thick was applied on a gray cast iron disc to enhance the coating quality and prevent the formation of hot cracks during solidification. The microstructural analysis of the cross-section of the coating showed that the buffer layer diffused into the Fe3Al coating, forming a combination of Fe3Al, Fe, and Fe3AlC0.5 phases. The tribological properties of the Fe3Al-coated disc were evaluated using pin-on-disc tests against two different copper-free friction materials extracted from commercial brake pads. The wear results show a coefficient of friction comparable to that of an uncoated disc (≈0.55), but with a reduction in particulate matter (PM) emissions, which decreased from 600 to 476 #/cm3. The last issue is an interesting aspect that is gaining increasing importance in view of the upcoming international standards. Full article
(This article belongs to the Special Issue Laser Surface Engineering for Tribology)
Show Figures

Figure 1

20 pages, 17782 KiB  
Article
Numerical Investigation of the Formation of a Failure Cone during the Pullout of an Undercutting Anchor
by Józef Jonak, Robert Karpiński, Andrzej Wójcik and Michał Siegmund
Materials 2023, 16(5), 2010; https://doi.org/10.3390/ma16052010 - 28 Feb 2023
Cited by 9 | Viewed by 2503
Abstract
Previously published articles on anchors have mainly focused on determining the pullout force of the anchor (depending on the strength parameters of the concrete), the geometric parameters of the anchor head, and the effective anchor depth. The extent (volume) of the so-called failure [...] Read more.
Previously published articles on anchors have mainly focused on determining the pullout force of the anchor (depending on the strength parameters of the concrete), the geometric parameters of the anchor head, and the effective anchor depth. The extent (volume) of the so-called failure cone has often addressed as a secondary matter, serving only to approximate the size of the zone of potential failure of the medium in which the anchor is installed. For the authors of these presented research results, from the perspective of evaluating the proposed stripping technology, an important aspect was the determination of the extent and volume of the stripping, as well as the determination of why the defragmentation of the cone of failure favors the removal of the stripping products. Therefore, it is reasonable to conduct research on the proposed topic. Thus far, the authors have shown that the ratio of the radius of the base of the destruction cone to the anchorage depth is significantly larger than in concrete (~1.5) and ranges from 3.9–4.2. The purpose of the presented research was to determine the influence of rock strength parameters on the mechanism of failure cone formation, including, in particular, the potential for defragmentation. The analysis was conducted with the finite element method (FEM) using the ABAQUS program. The scope of the analysis included two categories of rocks, i.e., those with low compressive strength (<100 MPa) and strong rocks (>100 MPa). Due to the limitations of the proposed stripping method, the analysis was conducted for an effective anchoring depth limited to 100 mm. It was shown that for anchorage depths <100 mm, for rocks with high compressive strength (above 100 MPa), there is a tendency to spontaneously generate radial cracks, leading to the fragmentation of the failure zone. The results of the numerical analysis were verified by field tests, yielding convergent results regarding the course of the de-fragmentation mechanism. In conclusion, it was found that in the case of gray sandstones, with strengths of 50–100 MPa, the uniform type of detachment (compact cone of detachment) dominates, but with a much larger radius of the base (a greater extent of detachment on the free surface). Full article
(This article belongs to the Special Issue Research and Modeling of Materials Fatigue and Fracture)
Show Figures

Figure 1

25 pages, 11255 KiB  
Article
Verification of Continuum Mechanics Predictions with Experimental Mechanics
by Cesar A. Sciammarella, Luciano Lamberti and Federico M. Sciammarella
Materials 2020, 13(1), 77; https://doi.org/10.3390/ma13010077 - 22 Dec 2019
Cited by 2 | Viewed by 3282
Abstract
The general goal of the study is to connect theoretical predictions of continuum mechanics with actual experimental observations that support these predictions. The representative volume element (RVE) bridges the theoretical concept of continuum with the actual discontinuous structure of matter. This paper presents [...] Read more.
The general goal of the study is to connect theoretical predictions of continuum mechanics with actual experimental observations that support these predictions. The representative volume element (RVE) bridges the theoretical concept of continuum with the actual discontinuous structure of matter. This paper presents an experimental verification of the RVE concept. Foundations of continuum kinematics as well as mathematical functions relating displacement vectorial fields to the recording of these fields by a light sensor in the form of gray-level scalar fields are reviewed. The Eulerian derivative field tensors are related to the deformation of the continuum: the Euler–Almansi tensor is extracted, and its properties are discussed. The compatibility between the Euler–Almansi tensor and the Cauchy stress tensor is analyzed. In order to verify the concept of the RVE, a multiscale analysis of an Al–SiC composite material is carried out. Furthermore, it is proven that the Euler–Almansi strain tensor and the Cauchy stress tensor are conjugate in the Hill–Mandel sense by solving an identification problem of the constitutive model of urethane rubber. Full article
Show Figures

Figure 1

16 pages, 846 KiB  
Article
Evaluating Water Resource Security in Karst Areas Using DPSIRM Modeling, Gray Correlation, and Matter–Element Analysis
by Deliang Sun, Jianping Wu, Fengtai Zhang, Weici Su and Hong Hui
Sustainability 2018, 10(11), 3934; https://doi.org/10.3390/su10113934 - 29 Oct 2018
Cited by 25 | Viewed by 3149
Abstract
To evaluate the long-term security of water resources in Guizhou, this paper presents an evaluation index that incorporates the driving force–pressure–state–impact–response–management (DPSIRM) framework, the gray correlation method, and matter–element analysis. For the period of 2005–2012, our results show that water resources were within [...] Read more.
To evaluate the long-term security of water resources in Guizhou, this paper presents an evaluation index that incorporates the driving force–pressure–state–impact–response–management (DPSIRM) framework, the gray correlation method, and matter–element analysis. For the period of 2005–2012, our results show that water resources were within the “generally safe” limits for all years except 2006 and 2011, which were characterized by drought conditions. In karst regions, drought has a relatively large impact on water security and is compounded in Guizhou by rapid economic development, nonpoint-source agricultural pollution, and inadequate sewage treatment. Nonetheless, recent efforts to return farmland to forest and grassland and to control desertification have led to increased forest cover and higher levels of soil and water conservation, while systems have been implemented to foster the effective management of water resources in karst areas. In this study, we used both gray matter–element analysis and a DPSIRM framework to assess the state of water resources in Guizhou, the results of which were compared and verified by the gray set pair method, and to provide a reference for evaluating other karst areas. Full article
Show Figures

Figure 1

19 pages, 9071 KiB  
Article
TRPV1-Like Immunoreactivity in the Human Locus K, a Distinct Subregion of the Cuneate Nucleus
by Marina Del Fiacco, Maria Pina Serra, Marianna Boi, Laura Poddighe, Roberto Demontis, Antonio Carai and Marina Quartu
Cells 2018, 7(7), 72; https://doi.org/10.3390/cells7070072 - 8 Jul 2018
Cited by 2 | Viewed by 4566
Abstract
The presence of transient receptor potential vanilloid type-1 receptor (TRPV1)-like immunoreactivity (LI), in the form of nerve fibres and terminals, is shown in a set of discrete gray matter subregions placed in the territory of the human cuneate nucleus. We showed previously that [...] Read more.
The presence of transient receptor potential vanilloid type-1 receptor (TRPV1)-like immunoreactivity (LI), in the form of nerve fibres and terminals, is shown in a set of discrete gray matter subregions placed in the territory of the human cuneate nucleus. We showed previously that those subregions share neurochemical and structural features with the protopathic nuclei and, after the ancient name of our town, collectively call them Locus Karalis, and briefly Locus K. TRPV1-LI in the Locus K is codistributed, though not perfectly overlapped, with that of the neuropeptides calcitonin gene-related peptide and substance P, the topography of the elements immunoreactive to the three markers, in relation to each other, reflecting that previously described in the caudal spinal trigeminal nucleus. Myelin stainings show that myelinated fibres, abundant in the cuneate, gracile and trigeminal magnocellular nuclei, are scarce in the Locus K as in the trigeminal substantia gelatinosa. Morphometric analysis shows that cell size and density of Locus K neurons are consistent with those of the trigeminal substantia gelatinosa and significantly different from those of the magnocellular trigeminal, solitary and dorsal column nuclei. We propose that Locus K is a special component of the human dorsal column nuclei. Its functional role remains to be determined, but TRPV1 appears to play a part in it. Full article
(This article belongs to the Special Issue TRP Channels in Health and Disease)
Show Figures

Figure 1

Back to TopTop