Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = gravity gradient instrument

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 15023 KiB  
Article
Expected Precision of Gravity Gradient Recovered from Ka-Band Radar Interferometer Observations and Impact of Instrument Errors
by Hengyang Guo, Xiaoyun Wan, Fei Wang and Song Tian
Remote Sens. 2024, 16(3), 576; https://doi.org/10.3390/rs16030576 - 2 Feb 2024
Cited by 1 | Viewed by 1828
Abstract
Full tensor of gravity gradients contains extremely large amounts of information, which is one of the most important sources for research on recovery seafloor topography and underwater matching navigation. The calculation and accuracy of the full tensor of gravity gradients are worth studying. [...] Read more.
Full tensor of gravity gradients contains extremely large amounts of information, which is one of the most important sources for research on recovery seafloor topography and underwater matching navigation. The calculation and accuracy of the full tensor of gravity gradients are worth studying. The Ka-band interferometric radar altimeter (KaRIn) of surface water and ocean topography (SWOT) mission enables high spatial resolution of sea surface height (SSH), which would be beneficial for the calculation of gravity gradients. However, there are no clear accuracy results for the gravity gradients (the gravity gradient tensor represents the second-order derivative of the gravity potential) recovered based on SWOT data. This study evaluated the possible precision of gravity gradients using the discretization method based on simulated SWOT wide-swath data and investigated the impact of instrument errors. The data are simulated based on the sea level anomaly data provided by the European Space Agency. The instrument errors are simulated based on the power spectrum data provided in the SWOT error budget document. Firstly, the full tensor of gravity gradients (SWOT_GGT) is calculated based on deflections of the vertical and gravity anomaly. The distinctions of instrument errors on the ascending and descending orbits are also taken into account in the calculation. The precision of the Tzz component is evaluated by the vertical gravity gradient model provided by the Scripps Institution of Oceanography. All components of SWOT_GGT are validated by the gravity gradients model, which is calculated by the open-source software GrafLab based on spherical harmonic. The Tzz component has the poorest precision among all the components. The reason for the worst accuracy of the Tzz component may be that it is derived by Txx and Tyy, Tzz would have a larger error than Txx and Tyy. The precision of all components is better than 6 E. Among the various errors, the effect of phase error and KaRIn error (random error caused by interferometric radar) on the results is greater than 2 E. The effect of the other four errors on the results is about 0.5 E. Utilizing multi-cycle data for the full tensor of gravity gradients recovery can suppress the effect of errors. Full article
(This article belongs to the Special Issue Remote Sensing in Space Geodesy and Cartography Methods II)
Show Figures

Figure 1

21 pages, 12290 KiB  
Article
Integration of Residual Terrain Modelling and the Equivalent Source Layer Method in Gravity Field Synthesis for Airborne Gravity Gradiometer Test Site Determination
by Meng Yang, Wei-Kai Li, Wei Feng, Roland Pail, Yan-Gang Wu and Min Zhong
Remote Sens. 2023, 15(21), 5190; https://doi.org/10.3390/rs15215190 - 31 Oct 2023
Cited by 6 | Viewed by 1884
Abstract
To calibrate airborne gravity gradiometers currently in development in China, it is urgent to build an airborne gravity gradiometer test site. The site’s selection depends on the preknowledge of high-resolution gravity and gradient structures. The residual terrain modelling (RTM) technique is generally applied [...] Read more.
To calibrate airborne gravity gradiometers currently in development in China, it is urgent to build an airborne gravity gradiometer test site. The site’s selection depends on the preknowledge of high-resolution gravity and gradient structures. The residual terrain modelling (RTM) technique is generally applied to recover the short-scale gravity field signals. However, due to limitations in the quality and resolution of density models, RTM terrain generally assumes a constant density. This assumption can introduce significant errors in areas with substantial density anomalies and of reggued terrain, such as volcano areas. In this study, we promote a method to determine a high-resolution gravity field by integrating long-wavelength signals generated by EGM2008 with short-wavelength signals from terrain relief and shallow density anomalies. These short wavelength signals are recovered using the RTM technique with both constant density and density anomalies obtained through the equivalent source layer (ESL) method, utilizing sparse terrestrial gravity measurements. Compared to the recovery rate of 54.62% using the classical RTM method, the recovery rate increases to 86.22% after involving density anomalies. With this method, we investigate the gravity field signals over the Wudalianchi Volcano Field (WVF) both on the Earth’s surface and at a flight height of 100 m above the terrain. The contribution of each part and their attenuation characters are studied. In particular, the 5 km × 5 km area surrounding Bijiashan (BJS) and Wohushan (WHS) volcanos shows a strong gravity signature, making it a good candidate for the test site location. This study gives the location of the airborne gravity gradiometer test site which is an essential step in the instruments’ development. Furthermore, the method presented in this study offers a foundational framework for future data processing within the test site. Full article
(This article belongs to the Special Issue Geodesy of Earth Monitoring System)
Show Figures

Figure 1

21 pages, 3029 KiB  
Article
Low-Speed Clinorotation of Brachypodium distachyon and Arabidopsis thaliana Seedlings Triggers Root Tip Curvatures That Are Reminiscent of Gravitropism
by Shih-Heng Su, Alexander Moen, Rien M. Groskopf, Katherine L. Baldwin, Brian Vesperman and Patrick H. Masson
Int. J. Mol. Sci. 2023, 24(2), 1540; https://doi.org/10.3390/ijms24021540 - 12 Jan 2023
Cited by 1 | Viewed by 2185
Abstract
Clinostats are instruments that continuously rotate biological specimens along an axis, thereby averaging their orientation relative to gravity over time. Our previous experiments indicated that low-speed clinorotation may itself trigger directional root tip curvature. In this project, we have investigated the root curvature [...] Read more.
Clinostats are instruments that continuously rotate biological specimens along an axis, thereby averaging their orientation relative to gravity over time. Our previous experiments indicated that low-speed clinorotation may itself trigger directional root tip curvature. In this project, we have investigated the root curvature response to low-speed clinorotation using Arabidopsis thaliana and Brachypodium distachyon seedlings as models. We show that low-speed clinorotation triggers root tip curvature in which direction is dictated by gravitropism during the first half-turn of clinorotation. We also show that the angle of root tip curvature is modulated by the speed of clinorotation. Arabidopsis mutations affecting gravity susception (pgm) or gravity signal transduction (arg1, toc132) are shown to affect the root tip curvature response to low-speed clinorotation. Furthermore, low-speed vertical clinorotation triggers relocalization of the PIN3 auxin efflux facilitator to the lateral membrane of Arabidopsis root cap statocytes, and creates a lateral gradient of auxin across the root tip. Together, these observations support a role for gravitropism in modulating root curvature responses to clinorotation. Interestingly, distinct Brachypodium distachyon accessions display different abilities to develop root tip curvature responses to low-speed vertical clinorotation, suggesting the possibility of using genome-wide association studies to further investigate this process. Full article
(This article belongs to the Special Issue Cellular and Molecular Signaling Meet the Space Environment 2.0)
Show Figures

Figure 1

13 pages, 1278 KiB  
Article
Investigation of Infrasound Background Noise at Mátra Gravitational and Geophysical Laboratory (MGGL)
by Edit Fenyvesi, József Molnár and Sándor Czellár
Universe 2020, 6(1), 10; https://doi.org/10.3390/universe6010010 - 3 Jan 2020
Cited by 2 | Viewed by 3040
Abstract
Infrasound and seismic waves are supposed to be the main contributors to the gravity-gradient noise (Newtonian noise) of the third-generation subterranean gravitational wave detectors. This noise will limit the sensitivity of the instrument at frequencies below 20 Hz. Investigation of its origin and [...] Read more.
Infrasound and seismic waves are supposed to be the main contributors to the gravity-gradient noise (Newtonian noise) of the third-generation subterranean gravitational wave detectors. This noise will limit the sensitivity of the instrument at frequencies below 20 Hz. Investigation of its origin and the possible methods of mitigation have top priority during the designing period of the detectors. Therefore, long-term site characterizing measurements are needed at several subterranean sites. However, at some sites, mining activities can occur. These activities can cause sudden changes (transients) in the measured signal, and increase the continuous background noise, too. We have developed an algorithm based on discrete Haar transform to find these transients in the infrasound signal. We found that eliminating the transients decreases the variation of the noise spectra, and therefore results a more accurate characterization of the continuous background noise. We carried out experiments for controlling the continuous noise. Machines operating at the mine were turned on and off systematically in order to see their effect on the noise spectra. These experiments showed that the main contributor of the continuous noise is the ventilation system of the mine. We also estimated the contribution of infrasound Newtonian noise at MGGL to the strain noise of a subterranean GW detector similar to Einstein Telescope. Full article
(This article belongs to the Special Issue Black Hole Physics and Astrophysics)
Show Figures

Figure 1

35 pages, 18694 KiB  
Article
Turbulence, Low-Level Jets, and Waves in the Tyrrhenian Coastal Zone as Shown by Sodar
by Igor Petenko, Giampietro Casasanta, Simone Bucci, Margarita Kallistratova, Roberto Sozzi and Stefania Argentini
Atmosphere 2020, 11(1), 28; https://doi.org/10.3390/atmos11010028 - 27 Dec 2019
Cited by 10 | Viewed by 4076
Abstract
The characteristics of the vertical and temporal structure of the coastal atmospheric boundary layer are variable for different sites and are often not well known. Continuous monitoring of the atmospheric boundary layer was carried out close to the Tyrrhenian Sea, near Tarquinia (Italy), [...] Read more.
The characteristics of the vertical and temporal structure of the coastal atmospheric boundary layer are variable for different sites and are often not well known. Continuous monitoring of the atmospheric boundary layer was carried out close to the Tyrrhenian Sea, near Tarquinia (Italy), in 2015–2017. A ground-based remote sensing instrument (triaxial Doppler sodar) and in situ sensors (meteorological station, ultrasonic anemometer/thermometer, and net radiometer) were used to measure vertical wind velocity profiles, the thermal structure of the atmosphere, the height of the turbulent layer, turbulent heat and momentum fluxes in the surface layer, atmospheric radiation, and precipitation. Diurnal alternation of the atmospheric stability types governed by the solar cycle coupled with local sea/land breeze circulation processes is found to be variable and is classified into several main regimes. Low-level jets (LLJ) at heights of 100–300 m above the surface with maximum wind speed in the range of 5–18 m s−1 occur in land breezes, both during the night and early in the morning. Empirical relationships between the LLJ core wind speed characteristics and those near the surface are obtained. Two separated turbulent sub-layers, both below and above the LLJ core, are often observed, with the upper layer extending up to 400–600 m. Kelvin–Helmholtz billows associated with internal gravity–shear waves occurring in these layers present opposite slopes, in correspondence with the sign of vertical wind speed gradients. Our observational results provide a basis for the further development of theoretical and modelling approaches, taking into account the wave processes occurring in the atmospheric boundary layer at the land–sea interface. Full article
(This article belongs to the Special Issue Vertical Structure of the Atmospheric Boundary Layer in Coastal Zone)
Show Figures

Figure 1

10 pages, 6166 KiB  
Article
Scale Factor Calibration for a Rotating Accelerometer Gravity Gradiometer
by Zhongguang Deng, Chenyuan Hu, Xiangqing Huang, Wenjie Wu, Fangjing Hu, Huafeng Liu and Liangcheng Tu
Sensors 2018, 18(12), 4386; https://doi.org/10.3390/s18124386 - 11 Dec 2018
Cited by 3 | Viewed by 4806
Abstract
Rotating Accelerometer Gravity Gradiometers (RAGGs) play a significant role in applications such as resource exploration and gravity aided navigation. Scale factor calibration is an essential procedure for RAGG instruments before being used. In this paper, we propose a calibration system for a gravity [...] Read more.
Rotating Accelerometer Gravity Gradiometers (RAGGs) play a significant role in applications such as resource exploration and gravity aided navigation. Scale factor calibration is an essential procedure for RAGG instruments before being used. In this paper, we propose a calibration system for a gravity gradiometer to obtain the scale factor effectively, even when there are mass disturbance surroundings. In this system, four metal spring-based accelerometers with a good consistency are orthogonally assembled onto a rotary table to measure the spatial variation of the gravity gradient. By changing the approaching pattern of the reference gravity gradient excitation object, the calibration results are generated. Experimental results show that the proposed method can efficiently and repetitively detect a gravity gradient excitation mass weighing 260 kg within a range of 1.6 m and the scale factor of RAGG can be obtained as (5.4 ± 0.2) E/μV, which is consistent with the theoretical simulation. Error analyses reveal that the performance of the proposed calibration scheme is mainly limited by positioning error of the excitation and can be improved by applying higher accuracy position rails. Furthermore, the RAGG is expected to perform more efficiently and reliably in field tests in the future. Full article
(This article belongs to the Special Issue Gyroscopes and Accelerometers)
Show Figures

Figure 1

9 pages, 3049 KiB  
Article
Study on Misalignment Angle Compensation during Scale Factor Matching for Two Pairs of Accelerometers in a Gravity Gradient Instrument
by Xiangqing Huang, Zhongguang Deng, Yafei Xie, Ji Fan, Chenyuan Hu and Liangcheng Tu
Sensors 2018, 18(4), 1247; https://doi.org/10.3390/s18041247 - 18 Apr 2018
Cited by 17 | Viewed by 4944
Abstract
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of [...] Read more.
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 18356 KiB  
Article
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments
by Shitao Yan, Yafei Xie, Mengqi Zhang, Zhongguang Deng and Liangcheng Tu
Sensors 2017, 17(11), 2669; https://doi.org/10.3390/s17112669 - 18 Nov 2017
Cited by 36 | Viewed by 7826
Abstract
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel [...] Read more.
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

8 pages, 2153 KiB  
Article
A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer
by Xiangqing Huang, Zhongguang Deng, Yafei Xie, Zhu Li, Ji Fan and Liangcheng Tu
Sensors 2017, 17(11), 2471; https://doi.org/10.3390/s17112471 - 27 Oct 2017
Cited by 15 | Viewed by 6091
Abstract
A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI). Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically [...] Read more.
A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI). Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method. Full article
(This article belongs to the Special Issue Inertial Sensors for Positioning and Navigation)
Show Figures

Figure 1

Back to TopTop