Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = gpmA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1555 KB  
Article
Metabolic Proteins Expression Up-Regulated in Blood-Borne Extensively Drug-Resistant Salmonella Typhi Isolates from Pakistan
by Nusrat Yasin, Hazir Rahman, Muhammad Qasim, Iqbal Nisa, Yasra Sarwar, Niamat Khan, Khalid J. Alzahrani, Meshari A. Alsuwat, Fuad M. Alzahrani and Abrar Aljohani
Medicina 2024, 60(9), 1404; https://doi.org/10.3390/medicina60091404 - 27 Aug 2024
Viewed by 1583
Abstract
Background and Objectives: In the undertaken study, proteomics alterations of blood-borne XDR S. Typhi isolated from Pakistan were investigated using mass spectrometry. Materials and Methods: MDR and XDR S. Typhi total protein lysates were fractionated, digested, and processed for nanoflow LC-LTQ- [...] Read more.
Background and Objectives: In the undertaken study, proteomics alterations of blood-borne XDR S. Typhi isolated from Pakistan were investigated using mass spectrometry. Materials and Methods: MDR and XDR S. Typhi total protein lysates were fractionated, digested, and processed for nanoflow LC-LTQ-Orbitrap MS analysis. Results: Among the 1267 identified proteins, 37 were differentially regulated, of which 28 were up-regulated, and 9 were down-regulated in XDR S. Typhi as compared to MDR S. Typhi. Based on the functional annotation, proteins found up-regulated are involved mainly in metabolic pathways (ManA, FadB, DacC, GpmA, AphA, PfkB, TalA, FbaB, OtsA, 16504242), the biosynthesis of secondary metabolites (ManA, FadB, GlpB, GpmA, PfkB, TalA, FbaB, OtsA), microbial metabolism in diverse environments (FadB, GpmA, PfkB, NfnB, TalA, FbaB), and ABC transporters (PstS, YbeJ, MglB, RbsB, ArtJ). Proteins found down-regulated are involved mainly in carbon metabolism (FadB, GpmA, PfkB, FalA, FbaB) and the biosynthesis of amino acids (GpmA, PfkB, TalA, FbaB). Most of the identified differential proteins were predicted to be antigenic, and matched with resistome data. Conclusions: A total of 28 proteins were up-regulated, and 9 were down-regulated in XDR S. Typhi. Further characterization of the identified proteins will help in understanding the molecular signaling involved in the emergence of XDR S. Typhi. Full article
(This article belongs to the Special Issue Genomics and Proteomics in Gastrointestinal Disorders)
Show Figures

Figure 1

24 pages, 14046 KB  
Article
Research on the Performance and Modification Mechanism of Gutta-Percha-Modified Asphalt
by Simeng Yan, Shichao Cui, Naisheng Guo, Zhaoyang Chu, Jun Zhang, Sitong Yan and Xin Jin
Polymers 2024, 16(13), 1860; https://doi.org/10.3390/polym16131860 - 29 Jun 2024
Cited by 1 | Viewed by 1482
Abstract
Presently, there is a significant focus on the investigation and advancement of polymer-modified asphalt that is both high-performing and environmentally sustainable. This study thoroughly examined the performance and modification mechanism of gutta-percha (GP) as a novel asphalt modifier. The investigation was conducted using [...] Read more.
Presently, there is a significant focus on the investigation and advancement of polymer-modified asphalt that is both high-performing and environmentally sustainable. This study thoroughly examined the performance and modification mechanism of gutta-percha (GP) as a novel asphalt modifier. The investigation was conducted using a combination of macro- and microscopic testing, as well as molecular dynamics simulations. This work primarily examined the compatibility of GP with asphalt molecular modeling. This paper used molecular dynamics to identify the most suitable mixing temperature. Next, the gray correlation theory was used to discuss the most effective method for preparing gutta-percha-modified asphalt (GPMA). The macro-rheological tests and microscopic performance analysis provided a full understanding of the impact of GP on asphalt properties and the process of alteration. The findings indicate that eucommia ulmoides gum (EUG) exhibits good compatibility with asphalt, while sulfur-vulcanized eucommia ulmoides gum (SEUG) does not demonstrate compatibility with asphalt. Both EUG and SEUG enhance the thermal stability and resistance to deformation of asphalt at high temperatures, with SEUG having a particularly notable effect. However, both additives do not improve the resistance of asphalt to cracking at low temperatures. The manufacturing method for EUG-modified asphalt (EUGMA) involves physical mixing, whereas sulfur-vulcanized eucommia ulmoides gum-modified asphalt (SEUGMA) involves physical mixing together with certain chemical processes. This research establishes a theoretical foundation for the advancement of GP as a novel environmentally friendly and highly effective asphalt modification. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

13 pages, 3568 KB  
Article
The Influence of Temperature on Anisotropic Wettability Revealed by Friction Force Measurement
by Zhen Lin, Kangjian Xiao, Lijun Li, Yurong Zhang, Xiaolong Zhang, Daobing Chen and Longjian Xue
Biomimetics 2023, 8(2), 180; https://doi.org/10.3390/biomimetics8020180 - 25 Apr 2023
Cited by 3 | Viewed by 2726
Abstract
Anisotropic surfaces with special wettability under various temperatures are of both fundamental interest and practical importance in many fields. However, little attention has been paid to the surfaces at temperatures between room temperature and the boiling point of water, which is partially due [...] Read more.
Anisotropic surfaces with special wettability under various temperatures are of both fundamental interest and practical importance in many fields. However, little attention has been paid to the surfaces at temperatures between room temperature and the boiling point of water, which is partially due to the lack of a suitable characterization technique. Here, using the MPCP (monitoring of the position of the capillary’s projection) technique, the influence of the temperature on the friction of a water droplet on the graphene-PDMS (GP) micropillar array (GP-MA) is investigated. The friction forces in the orthogonal directions and the anisotropy in the friction decrease when the GP-MA surface is heated up, based on the photothermal effect of graphene. The friction forces also decrease along the pre-stretching direction but increase in the orthogonal direction when the stretching is increased. The change in the contact area, the Marangoni flow inside a droplet, and the mass reduction are responsible for the temperature dependence. The findings strengthen our fundamental understanding of the dynamics of drop friction at high temperatures and could pave the way for the design of new functional surfaces with special wettabilities. Full article
(This article belongs to the Special Issue Biological Attachment Systems and Biomimetics)
Show Figures

Graphical abstract

19 pages, 2193 KB  
Article
Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene gpmA as Part of the H2O2 Defense Mechanisms in Escherichia coli
by Myriam Roth, Emily C. A. Goodall, Karthik Pullela, Vincent Jaquet, Patrice François, Ian R. Henderson and Karl-Heinz Krause
Antioxidants 2022, 11(10), 2053; https://doi.org/10.3390/antiox11102053 - 18 Oct 2022
Cited by 5 | Viewed by 3065
Abstract
Hydrogen peroxide (H2O2) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H2O2 tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the [...] Read more.
Hydrogen peroxide (H2O2) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H2O2 tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H2O2 tolerance in Escherichia coli. Our TraDIS analysis identified 10 mutants with fitness defect upon H2O2 exposure, among which previously H2O2-associated genes (oxyR, dps, dksA, rpoS, hfq and polA) and other genes with no known association with H2O2 tolerance in E. coli (corA, rbsR, nhaA and gpmA). This is the first description of the impact of gpmA, a gene involved in glycolysis, on the susceptibility of E. coli to H2O2. Indeed, confirmatory experiments showed that the deletion of gpmA led to a specific hypersensitivity to H2O2 comparable to the deletion of the major H2O2 scavenger gene katG. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of gpmA was upregulated under H2O2 exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified gpmA as a member of the oxidative stress defense mechanism in E. coli. Full article
(This article belongs to the Special Issue A Lesson from Microorganisms: How to Counteract Oxidative Stress)
Show Figures

Figure 1

24 pages, 2112 KB  
Article
Identification of Representative Equivalent Volumes on the Microstructure of 3D-Printed Fiber-Reinforced Thermoplastics Based on Statistical Characterization
by Thiago Assis Dutra, Rafael Thiago Luiz Ferreira, Hugo Borelli Resende, Luís Miguel Oliveira, Brina Jane Blinzler and Leif E. Asp
Polymers 2022, 14(5), 972; https://doi.org/10.3390/polym14050972 - 28 Feb 2022
Cited by 5 | Viewed by 3518
Abstract
The present work describes a methodology to compute equivalent volumes representing the microstructure of 3D-printed continuous fiber-reinforced thermoplastics, based on a statistical characterization of the fiber distribution. In contrast to recent work, the methodology herein presented determines the statistically equivalent fiber distribution directly [...] Read more.
The present work describes a methodology to compute equivalent volumes representing the microstructure of 3D-printed continuous fiber-reinforced thermoplastics, based on a statistical characterization of the fiber distribution. In contrast to recent work, the methodology herein presented determines the statistically equivalent fiber distribution directly from cross-section micrographs, instead of generating random fiber arrangements. For this purpose, several regions, with different sizes and from different locations, are cropped from main cross-section micrographs and different spatial descriptor functions are adopted to characterize the microstructures in terms of agglomeration and periodicity of the fibers. Detailed information about the adopted spatial descriptors and the algorithm implemented to identify the fiber distribution, as well as to define the location of cropped regions, are given. From the obtained statistical characterization results, the minimum size of the equivalent volume required to be representative of the fiber distribution, which is found in the cross-section micrographs of 3D-printed composite materials, is presented. To support the findings, as well as to demonstrate the effectiveness of the proposed methodology, the homogenized properties are also computed using representative equivalent volumes obtained in the statistical characterization and the results are compared to those experimentally measured, which are available in the literature. Full article
(This article belongs to the Special Issue Mechanics of 3D-Printed Polymers and Polymer Composites)
Show Figures

Figure 1

15 pages, 5158 KB  
Article
Molecular Details of Actinomycin D-Treated MRSA Revealed via High-Dimensional Data
by Xuewei Xia, Jun Liu, Li Huang, Xiaoyong Zhang, Yunqin Deng, Fengming Li, Zhiyuan Liu and Riming Huang
Mar. Drugs 2022, 20(2), 114; https://doi.org/10.3390/md20020114 - 31 Jan 2022
Cited by 8 | Viewed by 4660
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is highly concerning as a principal infection pathogen. The investigation of higher effective natural anti-MRSA agents from marine Streptomyces parvulus has led to the isolation of actinomycin D, that showed potential anti-MRSA activity with MIC and MBC values of [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is highly concerning as a principal infection pathogen. The investigation of higher effective natural anti-MRSA agents from marine Streptomyces parvulus has led to the isolation of actinomycin D, that showed potential anti-MRSA activity with MIC and MBC values of 1 and 8 μg/mL, respectively. Proteomics-metabolomics analysis further demonstrated a total of 261 differential proteins and 144 differential metabolites induced by actinomycin D in MRSA, and the co-mapped correlation network of omics, indicated that actinomycin D induced the metabolism pathway of producing the antibiotic sensitivity in MRSA. Furthermore, the mRNA expression levels of the genes acnA, ebpS, clfA, icd, and gpmA related to the key differential proteins were down-regulated measured by qRT-PCR. Molecular docking predicted that actinomycin D was bound to the targets of the two key differential proteins AcnA and Icd by hydrogen bonds and interacted with multiple amino acid residues of the proteins. Thus, these findings will provide a basic understanding to further investigation of actinomycin D as a potential anti-MRSA agent. Full article
Show Figures

Graphical abstract

28 pages, 1968 KB  
Article
Expanding Puck and Schürmann Inter Fiber Fracture Criterion for Fiber Reinforced Thermoplastic 3D-Printed Composite Materials
by Thiago Assis Dutra, Rafael Thiago Luiz Ferreira, Hugo Borelli Resende, Brina Jane Blinzler and Ragnar Larsson
Materials 2020, 13(7), 1653; https://doi.org/10.3390/ma13071653 - 2 Apr 2020
Cited by 19 | Viewed by 5482
Abstract
The present work expands the application of Puck and Schürmann Inter-Fiber Fracture criterion to fiber reinforced thermoplastic 3D-printed composite materials. The effect of the ratio between the transverse compressive strength and the in-plane shear strength is discussed and a new transition point between [...] Read more.
The present work expands the application of Puck and Schürmann Inter-Fiber Fracture criterion to fiber reinforced thermoplastic 3D-printed composite materials. The effect of the ratio between the transverse compressive strength and the in-plane shear strength is discussed and a new transition point between the fracture conditions under compressive loading is proposed. The recommended values of the inclination parameters, as well as their effects on the proposed method, are also discussed. Failure envelopes are presented for different 3D-printed materials and also for traditional composite materials. The failure envelopes obtained here are compared to those provided by the original Puck and Schürmann criterion and to those provided by Gu and Chen. The differences between them are analyzed with the support of geometrical techniques and also statistical tools. It is demonstrated that the Expanded Puck and Schürmann is capable of providing more suitable failure envelopes for fiber reinforced thermoplastic 3D-printed composite materials in addition to traditional semi-brittle, brittle and intrinsically brittle composite materials. Full article
(This article belongs to the Special Issue Carbon Fiber Reinforced Polymers)
Show Figures

Figure 1

Back to TopTop