Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = glypicans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1493 KB  
Review
An Update of Immunohistochemistry in Hepatocellular Carcinoma
by Bingyu Li, Larry Huang, Jialing Huang and Jianhong Li
Diagnostics 2025, 15(17), 2144; https://doi.org/10.3390/diagnostics15172144 (registering DOI) - 25 Aug 2025
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge due to molecular heterogeneity and frequent delayed diagnosis. This comprehensive review synthesizes recent immunohistochemistry (IHC) advancements for HCC diagnosis, prognostication, and therapeutic prediction. We systematically evaluate conventional markers, such as hepatocyte paraffin 1 (HepPar1), arginase-1 [...] Read more.
Hepatocellular carcinoma (HCC) remains a global health challenge due to molecular heterogeneity and frequent delayed diagnosis. This comprehensive review synthesizes recent immunohistochemistry (IHC) advancements for HCC diagnosis, prognostication, and therapeutic prediction. We systematically evaluate conventional markers, such as hepatocyte paraffin 1 (HepPar1), arginase-1 (Arg-1), and glypican-3 (GPC3), as well as emerging biomarkers, detailing their diagnostic sensitivities and specificities in HCC with varied tumor differentiation. Prognostic immunostaining markers, such as Ki-67 proliferation index and vascular endothelial growth factor (VEGF) overexpression, correlate with reduced 5-year survival, while novel immune checkpoint IHC markers (PD-L1 and CTLA-4) predict response to immunotherapy, particularly in advanced HCC. This work provides evidence-based recommendations for optimizing IHC utilization in clinical practice while identifying knowledge gaps in biomarker validation and standardization. Full article
(This article belongs to the Special Issue Diagnostic and Prognostic Markers in Liver Diseases)
Show Figures

Figure 1

12 pages, 562 KB  
Article
Serum Level of Glypican-3 in Patients with Hepatocellular Carcinoma and Advanced Chronic Liver Disease: A Pilot Study
by Irina Ivanova, Sonya Banova-Chakyrova, Pavlina Boykova-Vylcheva and Yana Bocheva
Livers 2025, 5(3), 36; https://doi.org/10.3390/livers5030036 - 8 Aug 2025
Viewed by 459
Abstract
Background: Early diagnosis of hepatocellular carcinoma (HCC) and monitoring of therapeutic results remain clinical challenges. Methods: In a prospective study, we evaluated the diagnostic capabilities of the serum level of glypican-3 in 70 patients with chronic advanced compensated liver disease: 40 cases with [...] Read more.
Background: Early diagnosis of hepatocellular carcinoma (HCC) and monitoring of therapeutic results remain clinical challenges. Methods: In a prospective study, we evaluated the diagnostic capabilities of the serum level of glypican-3 in 70 patients with chronic advanced compensated liver disease: 40 cases with confirmed HCC and 30 cases with chronic viral hepatitis with bridging fibrosis or cirrhosis as a control group. The glypican-3 concentration was analyzed in the context of the disease characteristics. Results: The mean level of glypican-3 in HCC patients was 50.84 ± 75.98 ng/mL, significantly higher compared to the control group of 5.69 ± 10.43 ng/mL. A progressive increase in alpha-fetoprotein in accordance with the stage of neoplastic disease was observed, but this tendency was not assessed for glypican-3. Two cut-off levels can be suggested for glypican-3: 2.5 ng/mL to exclude HCC with an optimal sensitivity of 85%, and 33.7 ng/mL for confirmation of HCC, with a specificity of 96.7%. The diagnostic accuracy of serum glypican-3 was 80.0% for HCC, 82.1% for alpha-fetoprotein, and 87.4% for both tumor markers. Conclusions: This pilot study suggests a complementary role of glypican-3 with alpha-fetoprotein and better diagnostic performance when combining tumor biomarkers. Full article
Show Figures

Figure 1

31 pages, 23068 KB  
Article
Heparan Sulfate Proteoglycans as Potential Markers for In Vitro Human Neural Lineage Specification
by Chieh Yu, Duy L. B. Nguyen, Martina Gyimesi, Ian W. Peall, Son H. Pham, Lyn R. Griffiths, Rachel K. Okolicsanyi and Larisa M. Haupt
Cells 2025, 14(15), 1158; https://doi.org/10.3390/cells14151158 - 26 Jul 2025
Viewed by 567
Abstract
Heparan sulfate proteoglycans (HSPGs) within the neuronal niche are expressed during brain development, contributing to multiple aspects of neurogenesis, yet their roles in glial lineage commitment remain elusive. This study utilised three human cell models expanded under basal culture conditions followed by media-induced [...] Read more.
Heparan sulfate proteoglycans (HSPGs) within the neuronal niche are expressed during brain development, contributing to multiple aspects of neurogenesis, yet their roles in glial lineage commitment remain elusive. This study utilised three human cell models expanded under basal culture conditions followed by media-induced lineage induction to identify a reproducible and robust model of gliogenesis. SH-SY5Y human neuroblastoma cells (neuronal control), ReNcell CX human neural progenitor cells (astrocyte inductive) and ReNcell VM human neural progenitor (mixed neural induction) models were examined. The cultures were characterised during basal and inductive states via Q-PCR, Western Blotting, immunocytochemistry (ICC) and calcium signalling activity analyses. While the ReNcell lines did not produce fully mature or homogeneous astrocyte cultures, the ReNcell CX cultures most closely resembled an astrocytic phenotype with ReNcell VM cells treated with platelet-derived growth factor (PDGF) biased toward an oligodendrocyte lineage. The glycated variant of surface-bound glypican-2 (GPC2) was found to be associated with lineage commitment, with GPC6 and 6-O HS sulfation upregulated in astrocyte lineage cultures. Syndecan-3 (SDC3) emerged as a lineage-sensitive proteoglycan, with its cytoplasmic domain enriched in progenitor-like states and lost upon differentiation, supporting a role in maintaining neural plasticity. Conversely, the persistence of transmembrane-bound SDC3 in astrocyte cultures suggest continued involvement in extracellular signalling and proteoglycan secretion, demonstrated by increased membrane-bound HS aggregates. This data supports HSPGs and HS GAGs as human neural lineage differentiation and specification markers that may enable better isolation of human neural lineage-specific cell populations and improve our understanding of human neurogenesis. Full article
(This article belongs to the Collection Feature Papers in 'Cells of the Nervous System' Section)
Show Figures

Graphical abstract

15 pages, 3635 KB  
Article
Comparison of Apparent Diffusion Coefficient Values on Diffusion-Weighted MRI for Differentiating Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma
by Katrīna Marija Konošenoka, Nauris Zdanovskis, Aina Kratovska, Artūrs Šilovs and Veronika Zaiceva
Diagnostics 2025, 15(15), 1861; https://doi.org/10.3390/diagnostics15151861 - 24 Jul 2025
Viewed by 459
Abstract
Background and Objectives: Accurate noninvasive differentiation between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) remains a clinical challenge. This study aimed to assess the dignostic performance of apparent diffusion coefficient (ADC) values from diffusion-weighted MRI in distinguishing between HCC and ICC, with [...] Read more.
Background and Objectives: Accurate noninvasive differentiation between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) remains a clinical challenge. This study aimed to assess the dignostic performance of apparent diffusion coefficient (ADC) values from diffusion-weighted MRI in distinguishing between HCC and ICC, with histological confirmation as the gold standard. Materials and Methods: A retrospective analysis was performed on 61 patients (41 HCC, 20 ICC) who underwent liver MRI and percutaneous biopsy between 2019 and 2024. ADC values were measured from diffusion-weighted sequences (b-values of 0, 500, and 1000 s/mm2), and regions of interest were placed over solid tumor areas. Statistical analyses included t-tests, one-way ANOVA, and ROC curve analysis. Results: Mean ADC values did not differ significantly between HCC (1.09 ± 0.19 × 10−3 mm2/s) and ICC (1.08 ± 0.11 × 10−3 mm2/s). ROC analysis showed poor discriminative ability (AUC = 0.520; p = 0.806). In HCC, ADC values decreased with lower differentiation grades (p = 0.008, η2 = 0.224). No significant trend was observed in ICC (p = 0.410, η2 = 0.100). Immunohistochemical markers such as CK-7, Glypican 3, and TTF-1 showed significant diagnostic value between tumor subtypes. Conclusions: ADC values have limited utility for distinguishing HCC from ICC but may aid in HCC grading. Immunohistochemistry remains essential for accurate diagnosis, especially in poorly differentiated tumors. Further studies with larger cohorts are recommended to improve noninvasive diagnostic protocols. Full article
(This article belongs to the Special Issue Diagnostic Imaging in Gastrointestinal and Liver Diseases)
Show Figures

Figure 1

19 pages, 588 KB  
Review
Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights
by Luca Filippi, Viviana Frantellizzi, Luca Urso, Giuseppe De Vincentis and Nicoletta Urbano
Biomedicines 2025, 13(7), 1570; https://doi.org/10.3390/biomedicines13071570 - 26 Jun 2025
Viewed by 1308
Abstract
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity [...] Read more.
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity and tumor uptake but suffering from prolonged circulation times and suboptimal signal-to-background ratios. To address these limitations, interest has shifted toward low-molecular-weight vectors—synthetic peptides and small antibody fragments—labeled with shorter-lived radionuclides (e.g., 68Ga and 18F) to enable rapid pharmacokinetics and same-day imaging protocols. Emerging platforms such as affibodies and aptamers offer further advantages in target affinity and reduced immunogenicity. However, clinical translation requires rigorous validation: larger, histologically confirmed cohorts, head-to-head comparison with CT/MRI, and correlation with hard clinical endpoints. Moreover, leveraging GPC3 expression as a biomarker could guarantee a deeper knowledge of tumor biology—differentiation grade and vascular invasion risk—and guide theranostic strategies. While β-emitters (90Y, 177Lu) have been explored for GPC3-directed therapy, their efficacy is influenced by oxygenation and cell-cycle status, whereas α-emitters (225Ac) may overcome these constraints, albeit with challenges in radionuclide selection and daughter nuclide management. Finally, dual-targeting probes combining GPC3 and prostate-specific membrane antigen (PSMA) have demonstrated superior uptake and retention in murine models, suggesting a versatile approach for future clinical diagnostics and therapy planning. Full article
Show Figures

Figure 1

21 pages, 1332 KB  
Review
Unraveling Glypican-3: From Structural to Pathophysiological Roles and Mechanisms—An Integrative Perspective
by Qianling Piao, Xiaona Bian, Qi Zhao and Luguo Sun
Cells 2025, 14(10), 726; https://doi.org/10.3390/cells14100726 - 15 May 2025
Cited by 1 | Viewed by 1362
Abstract
Glypican3 (GPC3), initially cloned from rats 40 years ago, deeply participates in the development and homeostasis of multiple tissues and organs. Dysregulation of GPC3 is associated with cancerous and noncancerous diseases. Loss of the function of GPC3 leads to Simpson–Golabi–Behmel syndrome [...] Read more.
Glypican3 (GPC3), initially cloned from rats 40 years ago, deeply participates in the development and homeostasis of multiple tissues and organs. Dysregulation of GPC3 is associated with cancerous and noncancerous diseases. Loss of the function of GPC3 leads to Simpson–Golabi–Behmel syndrome (SGBS), which is characterized by pre- and postnatal overgrowth. However, GPC3 exerts both promotive and inhibitory roles in cancer development. Recent studies suggest that the dual roles of GPC3 in cancer may be attributed to its structural features. This review comprehensively summarizes the structural features, pathophysiological functions, and underlying mechanism of GPC3 and finally discuss the relationship between its structural modification and functions, aiming to provide a theoretical basis for the development of novel therapeutic strategies targeting GPC3 to treat diseases including cancer. Full article
Show Figures

Figure 1

21 pages, 2076 KB  
Article
Gut Microbiota-Based Immunotherapy: Engineered Escherichia coli Nissle 1917 for Oral Delivery of Glypican-1 in Pancreatic Cancer
by Idris Vruzhaj, Marta Gambirasi, Davide Busato, Aurora Giacomin, Giuseppe Toffoli and Amin Safa
Medicina 2025, 61(4), 633; https://doi.org/10.3390/medicina61040633 - 30 Mar 2025
Viewed by 1574
Abstract
Background and Objectives: The administration of oral vaccines offers a potential strategy for cancer immunotherapy; yet, the development of effective platforms continues to pose a difficulty. This study examines Escherichia coli Nissle 1917 (EcN) as a microbial vector for the precise delivery [...] Read more.
Background and Objectives: The administration of oral vaccines offers a potential strategy for cancer immunotherapy; yet, the development of effective platforms continues to pose a difficulty. This study examines Escherichia coli Nissle 1917 (EcN) as a microbial vector for the precise delivery of Glypican-1 (GPC1), a tumor-associated antigen significantly overexpressed in pancreatic ductal adenocarcinoma (PDAC).To evaluate the effectiveness of EcN as a vector for the delivery of GPC1 and assess its potential as an oral vaccination platform for cancer immunotherapy. Materials and Methods: EcN was genetically modified to produce a GPC1-flagellin fusion protein (GPC1-FL) to augment antigen immunogenicity. The expression and stability of GPC1 were confirmed in modified PANC02 cells using Western blot and flow cytometry, indicating that GPC1 expression did not influence tumor cell growth. A mouse model was employed to test immunogenicity post-oral delivery, measuring systemic IgG, IL-10, IL-2, and IFN-γ levels to indicate immune activation. Results: Oral immunization with EcN GPC1-FL elicited a robust systemic immune response, demonstrated by markedly increased levels of IgG and IL-10. IL-2 and IFN-γ concentrations were elevated in vaccinated mice relative to controls; however, the differences lacked statistical significance. Western blot examination of fecal samples verified consistent antigen expression in the gastrointestinal tract, indicating effective bacterial colonization and antigen retention. No detrimental impacts were noted, hence substantiating the safety of this methodology. Conclusions: These findings confirm EcN as a feasible and patient-friendly oral vaccination platform for cancer immunotherapy. The effective production of GPC1 in tumor cells, along with continuous antigen delivery and immune activation, underscores the promise of this approach for PDAC and other cancers. This study promotes microbial-based antigen delivery as a scalable, non-invasive substitute for traditional vaccine platforms. Full article
Show Figures

Figure 1

38 pages, 5006 KB  
Article
Changes in the Proteomic Profile After Audiogenic Kindling in the Inferior Colliculus of the GASH/Sal Model of Epilepsy
by Laura Zeballos, Carlos García-Peral, Martín M. Ledesma, Jerónimo Auzmendi, Alberto Lazarowski and Dolores E. López
Int. J. Mol. Sci. 2025, 26(5), 2331; https://doi.org/10.3390/ijms26052331 - 5 Mar 2025
Viewed by 1373
Abstract
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and [...] Read more.
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and resistance in predisposed individuals. This study investigates the proteomic and immune responses triggered by audiogenic kindling in the inferior colliculus, comparing non-responder animals exhibiting reduced seizure severity following repeated stimulation versus GASH/Sal naïve hamsters. To assess auditory pathway functionality, Auditory Brainstem Responses (ABRs) were recorded, revealing reduced neuronal activity in the auditory nerve of non-responders, while central auditory processing remained unaffected. Cytokine profiling demonstrated increased levels of proinflammatory markers, including IL-1 alpha (Interleukin-1 alpha), IL-10 (Interleukin-10), and TGF-beta (Transforming Growth Factor beta), alongside decreased IGF-1 (Insulin-like Growth Factor 1) levels, highlighting systemic inflammation and its interplay with neuroprotection. Building on these findings, a proteomic analysis identified 159 differentially expressed proteins (DEPs). Additionally, bioinformatic approaches, including Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), revealed disrupted pathways related to metabolic and inflammatory epileptic processes and a module potentially linked to a rise in the threshold of seizures, respectively. Differentially expressed genes, identified through bioinformatic and statistical analyses, were validated by RT-qPCR. This confirmed the upregulation of six genes (Gpc1—Glypican-1; Sdc3—Syndecan-3; Vgf—Nerve Growth Factor Inducible; Cpne5—Copine 5; Agap2—Arf-GAP with GTPase domain, ANK repeat, and PH domain-containing protein 2; and Dpp8—Dipeptidyl Peptidase 8) and the downregulation of two (Ralb—RAS-like proto-oncogene B—and S100b—S100 calcium-binding protein B), aligning with reduced seizure severity. This study may uncover key proteomic and immune mechanisms underlying seizure susceptibility, providing possible novel therapeutic targets for refractory epilepsy. Full article
(This article belongs to the Special Issue Neuroproteomics: Focus on Nervous System Function and Disease)
Show Figures

Figure 1

13 pages, 8363 KB  
Article
Expression Profiles of Five Common Cancer Membrane Protein Antigens Collected for the Development of Cocktail CAR-T Cell Therapies Applicable to Most Solid Cancer Patients
by Tetsuya Nakatsura, Kazumasa Takenouchi, Jun Kataoka, Yusuke Ito, Sae Kikuchi, Hiroki Kinoshita, Kazunobu Ohnuki, Toshihiro Suzuki and Nobuo Tsukamoto
Int. J. Mol. Sci. 2025, 26(5), 2145; https://doi.org/10.3390/ijms26052145 - 27 Feb 2025
Viewed by 1052
Abstract
Although CD19 CAR-T has been highly effective against B-cell blood cancers, there are few reports of successful treatments for solid cancers, probably because there are few protein antigens specifically expressed on the surface of the cancer cell membrane. The key to developing a [...] Read more.
Although CD19 CAR-T has been highly effective against B-cell blood cancers, there are few reports of successful treatments for solid cancers, probably because there are few protein antigens specifically expressed on the surface of the cancer cell membrane. The key to developing a groundbreaking CAR-T cell therapy effective against solid cancers is to “overcome the heterogeneity of cancer antigens”. For this purpose, it is necessary to target multiple cancer antigens simultaneously. In this study, we performed immunohistochemical analysis of various solid cancer specimens using antibodies against ROBO1, EphB4, CLDN1, and LAT1 in addition to GPC3, which we have previously studied. These antigens were frequently expressed in various solid cancers but shown to be rarely expressed, with some exceptions, in non-cancerous normal organs adjacent to the cancer. Although ROBO1 and GPC3 are often expressed in cytoplasm, there are also cases in which they are expressed on the cell membrane depending on the type of cancer. On the other hand, it has been revealed that three antigens—EphB4, CLDN1, and LAT1—are frequently expressed only on the cell membrane of cancer cells in various solid cancers, suggesting that they may be ideal targets for CAR-T cell therapy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 2129 KB  
Article
Trastuzumab Decreases the Expression of G1/S Regulators and Syndecan-4 Proteoglycan in Human Rhabdomyosarcoma
by Dora Julianna Szabo, Eniko Toth, Kitti Szabo, Zsofia Kata Hegedus, Noemi Bozsity-Farago, Istvan Zupko, Laszlo Rovo, Xue Xiao, Lin Xu and Aniko Keller-Pinter
Int. J. Mol. Sci. 2025, 26(5), 2137; https://doi.org/10.3390/ijms26052137 - 27 Feb 2025
Viewed by 1004
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, arises from skeletal muscle cells that fail to differentiate terminally. Two subgroups of RMS, fusion-positive and fusion-negative RMS (FPRMS and FNRMS, respectively), are characterized by the presence or absence of the PAX3/7-FOXO1 fusion [...] Read more.
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, arises from skeletal muscle cells that fail to differentiate terminally. Two subgroups of RMS, fusion-positive and fusion-negative RMS (FPRMS and FNRMS, respectively), are characterized by the presence or absence of the PAX3/7-FOXO1 fusion gene. RMSs frequently exhibit increased expression of human epidermal growth factor receptor-2 (HER2). Trastuzumab is a humanized monoclonal antibody targeting HER2, and its potential role in RMS treatment remains to be elucidated. Syndecan-4 (SDC4) is a heparan sulfate proteoglycan (HSPG) affecting myogenesis via Rac1-mediated actin remodeling. Previously, we demonstrated that the SDC4 gene is amplified in 28% of human FNRMS samples, associated with high mRNA expression, suggesting a tumor driver role. In this study, after analyzing the copy numbers and mRNA expressions of other HSPGs in human RMS samples, we found that in addition to SDC4, syndecan-1, syndecan-2, and glypican-1 were also amplified and highly expressed in FNRMS. In RD (human FNRMS) cells, elevated SDC4 expression was accompanied by low levels of phospho-Ser179 of SDC4, leading to high Rac1-GTP activity. Notably, this high SDC4 expression in RD cells decreased following trastuzumab treatment. Trastuzumab decreased the levels of G1/S checkpoint regulators cyclin E and cyclin D1 and reduced the cell number; however, it also downregulated the cyclin-dependent kinase inhibitor p21. The level of MyoD, a transcription factor essential for RMS cell survival, also decreased following trastuzumab administration. Our findings contribute to the understanding of the role of SDC4 in FNRMS. Since HER2 is expressed in about half of RMSs, the trastuzumab-mediated changes observed here may have therapeutic implications. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

28 pages, 1260 KB  
Review
Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches
by Shabnam Eghbali and Thatcher Ross Heumann
Cancers 2025, 17(2), 236; https://doi.org/10.3390/cancers17020236 - 13 Jan 2025
Cited by 6 | Viewed by 4210
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, and, with only 15–20% of HCC patients being suitable for potentially curative treatments, the vast majority of patients with HCC ultimately require systemic therapy. For decades, the choice of effective systemic therapy [...] Read more.
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, and, with only 15–20% of HCC patients being suitable for potentially curative treatments, the vast majority of patients with HCC ultimately require systemic therapy. For decades, the choice of effective systemic therapy for HCC remained sparse. In recent years, after the combination of atezolizumab and bevacizumab demonstrated superior overall survival over the first-line standard, sorafenib, there has been a major therapeutic paradigm shift to immunotherapy-based regimens for HCC. While representing a great leap forward for the treatment of this cancer, the reality is that less than one-third of patients achieve an objective response to immune checkpoint inhibitor-based therapy, so there remains a significant clinical need for further therapeutic optimization. In this review, we provide an overview of the current landscape of immunotherapy for unresectable HCC and delve into the tumor intrinsic and extrinsic mechanisms of resistance to established immunotherapies with a focus on novel therapeutic targets with strong translational potential. Following this, we spotlight emerging immunotherapy approaches and notable clinical trials aiming to optimize immunotherapy efficacy in HCC that include novel immune checkpoint inhibitors, tumor microenvironment modulators, targeted delivery systems, and locoregional interventions. Full article
Show Figures

Figure 1

13 pages, 2745 KB  
Article
Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery
by Shiyi Li, Katherine V. Nordick, Iván Murrieta-Álvarez, Randall P. Kirby, Rishav Bhattacharya, Ismael Garcia, Camila Hochman-Mendez, Todd K. Rosengart, Kenneth K. Liao and Nandan K. Mondal
Biomedicines 2025, 13(1), 33; https://doi.org/10.3390/biomedicines13010033 - 27 Dec 2024
Cited by 4 | Viewed by 1656
Abstract
Objectives: A prolonged cardiopulmonary bypass (CPB) time of over 180 min is linked to poorer outcomes and higher mortality in cardiac surgery. This study examines how glypican-1 shedding, matrix metallopeptidase 9 (MMP9), and the pro-inflammatory cytokine IL-1β may contribute to endothelial dysfunction in [...] Read more.
Objectives: A prolonged cardiopulmonary bypass (CPB) time of over 180 min is linked to poorer outcomes and higher mortality in cardiac surgery. This study examines how glypican-1 shedding, matrix metallopeptidase 9 (MMP9), and the pro-inflammatory cytokine IL-1β may contribute to endothelial dysfunction in patients undergoing on-pump surgery with an extended CPB. Methods: Fifty-one patients undergoing cardiac surgical procedures were divided into two groups based on the intraoperative CPB duration: (i) normal CPB (<180 min, n = 23) and (ii) prolonged CPB (>180 min, n = 28). The preoperative, intraoperative, and postoperative plasma levels of glypican-1, MMP9, and IL-1β were measured. Results: Before surgery, the plasma levels of glypican-1, MMP9, and IL-1β were comparable between the normal CPB and the prolonged CPB groups. However, after the end of the CPB, all three markers showed significant elevation in the prolonged CPB group compared to the normal CPB group. Significant correlations were observed between the intraoperative and postoperative levels of MMP9, IL-1β, and glypican-1. A strong positive correlation was also observed between the intraoperative and postoperative levels of glypican-1 and the duration of the CPB. Conclusions: A prolonged CPB triggers a systemic inflammatory response and activates MMP9, leading to glypican-1 shedding and endothelial dysfunction. Full article
Show Figures

Figure 1

14 pages, 1651 KB  
Article
Neutrophil Elastase Targets Select Proteins on Human Blood-Monocyte-Derived Macrophage Cell Surfaces
by Nadia Tasnim Ahmed, Apparao B. Kummarapurugu, Shuo Zheng, Gamze Bulut, Le Kang, Aashish Batheja, Adam Hawkridge and Judith A. Voynow
Int. J. Mol. Sci. 2024, 25(23), 13038; https://doi.org/10.3390/ijms252313038 - 4 Dec 2024
Cited by 2 | Viewed by 1853
Abstract
Neutrophil elastase (NE) has been reported to be a pro-inflammatory stimulus for macrophages. The aim of the present study was to determine the impact of NE exposure on the human macrophage proteome and evaluate its impact on pro-inflammatory signals. Human blood monocytes from [...] Read more.
Neutrophil elastase (NE) has been reported to be a pro-inflammatory stimulus for macrophages. The aim of the present study was to determine the impact of NE exposure on the human macrophage proteome and evaluate its impact on pro-inflammatory signals. Human blood monocytes from healthy volunteers were differentiated to macrophages and then exposed to either 500 nM of NE or control vehicle for 2 h in triplicate. Label-free quantitative proteomics analysis identified 41 differentially expressed proteins in the NE versus control vehicle datasets. A total of 26 proteins were downregulated and of those, 21 were cell surface proteins. Importantly, four of the cell surface proteins were proteoglycans: neuropilin 1 (NRP1), syndecan 2 (SDC2), glypican 4 (GPC4), and CD99 antigen-like protein 2 (CD99L2) along with neuropilin 2 (NRP2), CD99 antigen (CD99), and endoglin (ENG) which are known interactors. Additional NE-targeted proteins related to macrophage function were also measured including CD40, CD48, SPINT1, ST14, and MSR1. Collectively, this study provides a comprehensive unbiased view of selective NE-targeted cell surface proteins in chronically inflamed lungs. Full article
(This article belongs to the Special Issue The Role of Protease and Protease Inhibitors in Human Diseases)
Show Figures

Figure 1

9 pages, 1061 KB  
Brief Report
Glypican-3 and Cytokeratin-19 Expression in Pancreatic Cancer in a Canadian Population
by Carley Bekkers, Ravi Ramjeesingh and Thomas Arnason
J. Clin. Med. 2024, 13(22), 6893; https://doi.org/10.3390/jcm13226893 - 16 Nov 2024
Viewed by 1324
Abstract
Background/Objectives: One study of pancreatic ductal adenocarcinoma has found expression of glypican-3 (GPC3) and cytokeratin-19 (CK19) determined by immunohistochemistry to be associated with higher stage and grade disease, with a more adverse prognosis. The reported 44% rate of GPC3 expression in pancreatic cancer [...] Read more.
Background/Objectives: One study of pancreatic ductal adenocarcinoma has found expression of glypican-3 (GPC3) and cytokeratin-19 (CK19) determined by immunohistochemistry to be associated with higher stage and grade disease, with a more adverse prognosis. The reported 44% rate of GPC3 expression in pancreatic cancer raises the important possibility that targeted immunotherapies currently in development for hepatocellular carcinoma may also prove useful for GPC3-expressing pancreatic cancers. The present study aims to determine if a similar expression pattern of these markers and stage/grade/prognostic associations is present in our Canadian patient population. Methods: Patients with a pancreatic surgical resection for adenocarcinoma or neuroendocrine tumor (NET) were identified from pathology records over a 5-year period. Immunohistochemistry for GPC3 and CK19 was performed on archived tumor tissue and the proportion of positive cells and intensity of staining were recorded. Grade, stage, and overall survival were compared in patients with NETs that were CK19-positive versus -negative. Results: All 72 pancreatic adenocarcinomas and 20 NETs tested were negative for GPC3, apart from a single case of pancreatic adenocarcinoma. All 72 adenocarcinomas were positive for CK19 expression. Half of the NETs were positive for CK19. There was no correlation between CK19 expression in NETs and tumor grade, lymph node metastasis, distant metastasis, or overall survival. Conclusions: We are skeptical of the reported prognostic value of GPC3 and CK19 in pancreatic adenocarcinomas. CK19 as a prognostic marker in NETs has potential for further study. The results with our protocol for GPC3 immunohistochemistry suggest that pancreatic cancer may be a less promising target for GPC3-targeted immunotherapies than previously thought. Full article
(This article belongs to the Special Issue Pancreatic Cancer: Current and Emerging Treatment Options)
Show Figures

Figure 1

49 pages, 5746 KB  
Review
Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease
by Aikaterini Berdiaki, Monica Neagu, Petros Tzanakakis, Ioanna Spyridaki, Serge Pérez and Dragana Nikitovic
Biomolecules 2024, 14(9), 1186; https://doi.org/10.3390/biom14091186 - 20 Sep 2024
Cited by 26 | Viewed by 7791
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to [...] Read more.
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation. Full article
Show Figures

Figure 1

Back to TopTop