Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = glacier-and snow-fed rivers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8519 KB  
Article
How Do Climate Change and Deglaciation Affect Runoff Formation Mechanisms in the High-Mountain River Basin of the North Caucasus?
by Ekaterina D. Pavlyukevich, Inna N. Krylenko, Yuri G. Motovilov, Ekaterina P. Rets, Irina A. Korneva, Taisiya N. Postnikova and Oleg O. Rybak
Glacies 2025, 2(3), 10; https://doi.org/10.3390/glacies2030010 - 3 Sep 2025
Viewed by 428
Abstract
This study assesses the impact of climate change and glacier retreat on river runoff in the high-altitude Terek River Basin using the physically based ECOMAG hydrological model. Sensitivity experiments examined the influence of glaciation, precipitation, and air temperature on runoff variability. Results indicate [...] Read more.
This study assesses the impact of climate change and glacier retreat on river runoff in the high-altitude Terek River Basin using the physically based ECOMAG hydrological model. Sensitivity experiments examined the influence of glaciation, precipitation, and air temperature on runoff variability. Results indicate that glacier retreat primarily affects streamflow in upper reaches during peak melt (July–October), while precipitation changes influence both annual runoff and peak flows (May–October). Rising temperatures shift snowmelt to earlier periods, increasing runoff in spring and autumn but reducing it in summer. The increase in autumn runoff is also due to the shift between solid and liquid precipitation, as warmer temperatures cause more precipitation to fall as rain, rather than snow. Scenario-based modeling incorporated projected glacier area changes (GloGEMflow-DD) and regional climate data (CORDEX) under RCP2.6 and RCP8.5 scenarios. Simulated runoff changes by the end of the 21st century (2070–2099) compared to the historical period (1977–2005) ranged from −2% to +5% under RCP2.6 and from −8% to +14% under RCP8.5. Analysis of runoff components (snowmelt, rainfall, and glacier melt) revealed that changes in river flow are largely determined by the elevation of snow and glacier accumulation zones and the rate of their degradation. The projected trends are consistent with current observations and emphasize the need for adaptive water resource management and risk mitigation strategies in glacier-fed catchments under climate change. Full article
Show Figures

Figure 1

18 pages, 4020 KB  
Article
Prediction of Glacially Derived Runoff in the Muzati River Watershed Based on the PSO-LSTM Model
by Xiazi Yang, Balati Maihemuti, Zibibula Simayi, Muattar Saydi and Lu Na
Water 2022, 14(13), 2018; https://doi.org/10.3390/w14132018 - 24 Jun 2022
Cited by 21 | Viewed by 2868
Abstract
The simulation and prediction of glacially derived runoff are significant for water resource management and sustainable development in water-stressed arid regions. However, the application of a hydrological model in such regions is typically limited by the intricate runoff production mechanism, which is associated [...] Read more.
The simulation and prediction of glacially derived runoff are significant for water resource management and sustainable development in water-stressed arid regions. However, the application of a hydrological model in such regions is typically limited by the intricate runoff production mechanism, which is associated with snow and ice melting, and sparse monitoring data over glacierized headwaters. To address these limitations, this study develops a set of mathematical models with a certain physical significance and an efficient particle swarm optimization algorithm by applying long- and short-term memory networks on the glacierized Muzati River basin. First, the trends in the runoff, precipitation, and air temperature are analyzed from 1990 to 2015, and differences in their correlations in this period are exposed. Then, Particle Swarm Optimization–Long Short-Term Memory (PSO-LSTM) and Bi-directional Long Short-Term Memory (BiLSTM) models are combined and applied to the precipitation and air temperature data to predict the glacially derived runoff. The prediction accuracy is validated by the observed runoff at the river outlet at the Pochengzi hydrological station. Finally, two other types of models, the RF (Random Forest) and LSTM (Long Short-Term Memory) models, are constructed to verify the prediction results. The results indicate that the glacially derived runoff is strongly correlated with air temperature and precipitation. However, in the study region over the past 26 years, the air temperature was not obviously increasing, and the precipitation and glacially derived runoff were significantly decreasing. The test results show that the PSO-LSTM and BiLSTM runoff prediction models perform better than the RF and LSTM models in the glacierized Muzati River basin. In the validation period, among all models, the PSO-LSTM model has the smallest mean absolute error and root-mean-square error and the largest coefficient of determination of 6.082, 8.034, and 0.973, respectively. It is followed by the BiLSTM model having a mean absolute error, root-mean-square error, and coefficient of determination of 6.751, 9.083, and 0.972, respectively. These results imply that both the particle swarm optimization algorithm and the bi-directional structure can effectively enhance the prediction accuracy of the baseline LSTM model. The results presented in this study can provide a deeper understanding and a more appropriate method of predicting the glacially derived runoff in glacier-fed river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 3632 KB  
Article
Opportunities and Challenges Arising from Rapid Cryospheric Changes in the Southern Altai Mountains, China
by Wei Zhang, Yongping Shen, An’an Chen and Xuejiao Wu
Appl. Sci. 2022, 12(3), 1406; https://doi.org/10.3390/app12031406 - 28 Jan 2022
Cited by 6 | Viewed by 2439
Abstract
Optimizing the functions and services provided by the mountain cryosphere will maximize its benefits and minimize the negative impacts experienced by the populations that live and work in the cryosphere-fed regions. The high sensitivity of the mountain cryosphere to climate change highlights the [...] Read more.
Optimizing the functions and services provided by the mountain cryosphere will maximize its benefits and minimize the negative impacts experienced by the populations that live and work in the cryosphere-fed regions. The high sensitivity of the mountain cryosphere to climate change highlights the importance of evaluating cryospheric changes and any cascading effects if we are to achieve regional sustainable development goals (SDGs). The southern Altai Mountains (SAM), which are located in the arid to semi-arid region of central Asia, are vulnerable to ecological and environmental changes as well as to developing economic activities in northern Xinjiang, China. Furthermore, cryospheric melting in the SAM serves as a major water resource for northeastern Kazakhstan. Here, we systematically investigate historical cryospheric changes and possible trends in the SAM and also discover the opportunities and challenges on regional water resources management arising from these changes. The warming climate and increased solid precipitation have led to inconsistent trends in the mountain cryosphere. For example, mountain glaciers, seasonally frozen ground (SFG), and river ice have followed significant shrinkage trends as evidenced by the accelerated glacier melt, shallowed freezing depth of SFG, and thinned river ice with shorter durations, respectively. In contrast, snow accumulation has increased during the cold season, but the duration of snow cover has remained stable because of the earlier onset of spring melting. The consequently earlier melt has changed the timing of surface runoff and water availability. Greater interannual fluctuations in snow cover have led to more frequent transitions between snow cover hazards (snowstorm and snowmelt flooding) and snow droughts, which pose challenges to hydropower, agriculture, aquatic life, the tail-end lake environment, fisheries, and transboundary water resource management. Increasing the reservoir capacity to regulate interannual water availability and decrease the risk associated with hydrological hazards related to extreme snowmelt may be an important supplement to the regulation and supply of cryospheric functions in a warmer climate. Full article
Show Figures

Figure 1

15 pages, 3103 KB  
Article
Flood Hazard Mapping of Rivers in Snow- and Glacier-Fed Basins of Different Hydrological Regimes Using a Hydrodynamic Model under RCP Scenarios
by Huma Hayat, Muhammad Saifullah, Muhammad Ashraf, Shiyin Liu, Sher Muhammad, Romana Khan and Adnan Ahmad Tahir
Water 2021, 13(20), 2806; https://doi.org/10.3390/w13202806 - 9 Oct 2021
Cited by 2 | Viewed by 5199
Abstract
The global warming trends have accelerated snow and glacier melt in mountainous river basins, which has increased the probability of glacial outburst flooding. Recurrent flood events are a challenge for the developing economy of Pakistan in terms of damage to infrastructure and loss [...] Read more.
The global warming trends have accelerated snow and glacier melt in mountainous river basins, which has increased the probability of glacial outburst flooding. Recurrent flood events are a challenge for the developing economy of Pakistan in terms of damage to infrastructure and loss of lives. Flood hazard maps can be used for future flood damage assessment, preparedness, and mitigation. The current study focused on the assessment and mapping of flood-prone areas in small settlements of the major snow- and glacier-fed river basins situated in Hindukush–Karakoram–Himalaya (HKH) under future climate scenarios. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used for flood simulation and mapping. The ALOS 12.5 m Digital Elevation Model (DEM) was used to extract river geometry, and the flows generated in these river basins using RCP scenarios were used as the inflow boundary condition. Severe flooding would inundate an area of ~66%, ~86%, ~37% (under mid-21st century), and an area of ~72%, ~93%, ~59% (under late 21st century RCP 8.5 scenario) in the Chitral, Hunza, and Astore river basins, respectively. There is an urgent need to develop a robust flood mitigation plan for the frequent floods occurring in northern Pakistan. Full article
(This article belongs to the Special Issue Remote Sensing for Flood Monitoring and Risk Assessment)
Show Figures

Figure 1

19 pages, 5097 KB  
Article
The Impact of Climate Change on Hydrological Regime of the Transboundary River Shu Basin (Kazakhstan–Kyrgyzstan): Forecast for 2050
by Karlygash Kaliyeva, Petras Punys and Yermekul Zhaparkulova
Water 2021, 13(20), 2800; https://doi.org/10.3390/w13202800 - 9 Oct 2021
Cited by 5 | Viewed by 4416
Abstract
The impact of regional climate change on the runoff and the regime of glacier- and snow-fed rivers in the transboundary river Shu basin between Kazakhstan and Kyrgyzstan is investigated. This study covered three of the most representative rivers of the Shu basin. It [...] Read more.
The impact of regional climate change on the runoff and the regime of glacier- and snow-fed rivers in the transboundary river Shu basin between Kazakhstan and Kyrgyzstan is investigated. This study covered three of the most representative rivers of the Shu basin. It was based on the weather and gauging stations’ observation data in the river Shu basin — the northern Tien Shan. Based on the trend analysis, an increase in the average annual temperature and river discharge was identified within the observation period as a whole, and for the separate compared periods. Furthermore, the mean annual flow projections were made based on the methodology of the retrospective analysis of runoff and the rate of river flow increase for the observation period, and further extrapolation of data for the forecast period. According to the analysis, the mean annual flow for the considered rivers will be decreased by 25 to 30% on average by 2050. These findings are necessary for elaborating adaptation measures in water allocation for freshwater supply, irrigation and hydropower within this transboundary river. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 5699 KB  
Article
Evaluation of the Impact of Climate Change on Runoff Generation in an Andean Glacier Watershed
by Rossana Escanilla-Minchel, Hernán Alcayaga, Marco Soto-Alvarez, Christophe Kinnard and Roberto Urrutia
Water 2020, 12(12), 3547; https://doi.org/10.3390/w12123547 - 17 Dec 2020
Cited by 25 | Viewed by 5171
Abstract
Excluding Antarctica and Greenland, 3.8% of the world’s glacier area is concentrated in Chile. The country has been strongly affected by the mega drought, which affects the south-central area and has produced an increase in dependence on water resources from snow and glacier [...] Read more.
Excluding Antarctica and Greenland, 3.8% of the world’s glacier area is concentrated in Chile. The country has been strongly affected by the mega drought, which affects the south-central area and has produced an increase in dependence on water resources from snow and glacier melting in dry periods. Recent climate change has led to an elevation of the zero-degree isotherm, a decrease in solid-state precipitation amounts and an accelerated loss of glacier and snow storage in the Chilean Andes. This situation calls for a better understanding of future water discharge in Andean headwater catchments in order to improve water resources management in glacier-fed populated areas. The present study uses hydrological modeling to characterize the hydrological processes occurring in a glacio-nival watershed of the central Andes and to examine the impact of different climate change scenarios on discharge. The study site is the upper sub-watershed of the Tinguiririca River (area: 141 km2), of which nearly 20% is covered by Universidad Glacier. The semi-distributed Snowmelt Runoff Model + Glacier (SRM+G) was forced with local meteorological data to simulate catchment runoff. The model was calibrated on even years and validated on odd years during the 2008–2014 period and found to correctly reproduce daily runoff. The model was then forced with downscaled ensemble projected precipitation and temperature series under the RCP 4.5 and RCP 8.5 scenarios, and the glacier adjusted using a volume-area scaling relationship. The results obtained for 2050 indicate a decrease in mean annual discharge (MAD) of 18.1% for the lowest emission scenario and 43.3% for the most pessimistic emission scenario, while for 2100 the MAD decreases by 31.4 and 54.2%, respectively, for each emission scenario. Results show that decreasing precipitation lead to reduced rainfall and snowmelt contributions to discharge. Glacier melt thus partly buffers the drying climate trend, but our results show that the peak water occurs near 2040, after which glacier depletion leads to reducing discharge, threatening the long-term water resource availability in this region. Full article
(This article belongs to the Special Issue Whither Cold Regions Hydrology under Changing Climate Conditions)
Show Figures

Figure 1

25 pages, 8699 KB  
Article
Coupling Sediment Transport Dynamics with Sediment and Discharge Sources in a Glacial Andean Basin
by Ricardo Carrillo and Luca Mao
Water 2020, 12(12), 3452; https://doi.org/10.3390/w12123452 - 9 Dec 2020
Cited by 16 | Viewed by 4057
Abstract
Suspended and bedload transport dynamics on rivers draining glacierized basins depend on complex processes of runoff generation together with the degree of sediment connectivity and coupling at the basin scale. This paper presents a recent dataset of sediment transport in the Estero Morales, [...] Read more.
Suspended and bedload transport dynamics on rivers draining glacierized basins depend on complex processes of runoff generation together with the degree of sediment connectivity and coupling at the basin scale. This paper presents a recent dataset of sediment transport in the Estero Morales, a 27 km2 glacier-fed basin in Chile where suspended sediment concentration (SSC) and bedload (BL) fluxes have been continuously monitored during two ablation seasons (2014–2015 and 2015–1016). The relationship between discharge and SSC depends on the origin of runoff, which is higher during glacier melting, although the hysteresis index reveals that sediment sources are closer to the outlet during snowmelt. As for suspended sediment transport, bedload availability and yield depend on the origin of runoff. Bedload yield and bedload transport efficiency are higher during the glacier melting period in the first ablations season due to a high coupling to the proglacial area after the snowmelt period. Instead, on the second ablation seasons the peak of bedload yield and bedload transport efficiency occur in the snowmelt period, due to a better coupling of the lower part of the basin caused by a longer permanency of snow. Differences in volumes of transported sediments between the two seasons reveal contrasting mechanisms in the coupling dynamic of the sediment cascade, due to progressive changes of type and location of the main sources of runoff and sediments in this glacierized basin. The paper highlights the importance of studying these trends, as with retreating glaciers basins are likely producing less sediments after the “peak flow”, with long-term consequences on the ecology and geomorphology of rivers downstream. Full article
(This article belongs to the Special Issue Fluvial Processes and Denudation)
Show Figures

Figure 1

28 pages, 6256 KB  
Article
Recent Changes in Water Discharge in Snow and Glacier Melt-Dominated Rivers in the Tienshan Mountains, Central Asia
by Qifei Zhang, Yaning Chen, Zhi Li, Gonghuan Fang, Yanyun Xiang, Yupeng Li and Huiping Ji
Remote Sens. 2020, 12(17), 2704; https://doi.org/10.3390/rs12172704 - 20 Aug 2020
Cited by 38 | Viewed by 6274
Abstract
Global warming has generally led to changes in river runoffs fed by snow and glacier meltwater in mountain ranges. The runoff of the Aksu River, which originates in the Southern Tienshan Mountains, exhibited a positive trend during 1979–2002, but this trend reversed during [...] Read more.
Global warming has generally led to changes in river runoffs fed by snow and glacier meltwater in mountain ranges. The runoff of the Aksu River, which originates in the Southern Tienshan Mountains, exhibited a positive trend during 1979–2002, but this trend reversed during 2002–2015. Through a comprehensive analysis, this study aims to estimate potential reasons for changes in the runoff of its two contrasting headwaters: the Toxkan and Kumalak Rivers, based on climatic data, the altitude of the 0 °C isotherm, glacier mass balance (GMB), snow cover area (SCA), snow depth (SD) and the sensitivity model. For the Toxkan River, the decrease in spring runoff mainly resulted from reductions in precipitation, whereas the decrease in summer runoff was mainly caused by early snowmelt in spring and a much-reduced snow meltwater supply in summer. In addition, the obvious glacier area reduction in the catchment (decreased to less than 4%) also contributed to the reduced summer runoff. For the Kumalak River, a sharp decrease rate of 10.21 × 108 m3/decade in runoff was detected due to summertime cooling of both surface and upper air temperatures. Reduced summer temperatures with a positive trend in precipitation not only inhibited glacier melting but also dropped the 0 °C layer altitude, resulting in a significant increase in summertime SCA and SD, a slowing of the glacier negative mass balance, and a lowering of the snow-line altitude. Full article
(This article belongs to the Special Issue Remote Sensing and Modeling of Land Surface Water)
Show Figures

Graphical abstract

25 pages, 4218 KB  
Article
Long-Term Hydro–Climatic Trends in the Mountainous Kofarnihon River Basin in Central Asia
by Aminjon Gulakhmadov, Xi Chen, Nekruz Gulahmadov, Tie Liu, Rashid Davlyatov, Safarkhon Sharofiddinov and Manuchekhr Gulakhmadov
Water 2020, 12(8), 2140; https://doi.org/10.3390/w12082140 - 29 Jul 2020
Cited by 16 | Viewed by 3955
Abstract
Hydro–climatic variables play an essential role in assessing the long-term changes in streamflow in the snow-fed and glacier-fed rivers that are extremely vulnerable to climatic variations in the alpine mountainous regions. The trend and magnitudinal changes of hydro–climatic variables, such as temperature, precipitation, [...] Read more.
Hydro–climatic variables play an essential role in assessing the long-term changes in streamflow in the snow-fed and glacier-fed rivers that are extremely vulnerable to climatic variations in the alpine mountainous regions. The trend and magnitudinal changes of hydro–climatic variables, such as temperature, precipitation, and streamflow, were determined by applying the non-parametric Mann–Kendall, modified Mann–Kendall, and Sen’s slope tests in the Kofarnihon River Basin in Central Asia. We also used Pettitt’s test to analyze the changes during the 1951–2012 and 1979–2012 time periods. This study revealed that the variations of climate variables have their significant spatial patterns and are strongly regulated by the altitude. From mountainous regions down to plain regions, the decadal temperature trends varied from −0.18 to 0.36 °C/decade and the variation of precipitation from −4.76 to −14.63 mm yr−1 per decade. Considering the temporal variation, the temperature trends decreased in winter and significantly increased in spring, and the precipitation trends significantly decreased in spring but significantly increased in winter in the high-altitude areas. As consequence, total streamflow in headwater regions shows the obvious increase and clear seasonal variations. The mean monthly streamflow decreased in fall and winter and significantly increased in the spring and summer seasons which can be attributed to the influence of global warming on the rapid melting of snow and ice. Although the abrupt change points in air temperature and precipitation occurred around the 1970s and 1990s in the low-altitude areas and 2000s in the high-altitude areas during the 1951–2012 and 1979–2012 periods, the general trends of hydro–climatic variables keep consistent. This study benefits water resource management, socio–economic development, and sustainable agricultural planning in Tajikistan and its downstream countries. Full article
(This article belongs to the Special Issue Statistical Approach to Hydrological Analysis)
Show Figures

Figure 1

20 pages, 5558 KB  
Article
Spaceborne Satellite for Snow Cover and Hydrological Characteristic of the Gilgit River Basin, Hindukush–Karakoram Mountains, Pakistan
by Dostdar Hussain, Chung-Yen Kuo, Abdul Hameed, Kuo-Hsin Tseng, Bulbul Jan, Nasir Abbas, Huan-Chin Kao, Wen-Hau Lan and Moslem Imani
Sensors 2019, 19(3), 531; https://doi.org/10.3390/s19030531 - 27 Jan 2019
Cited by 23 | Viewed by 6246
Abstract
The Indus River, which flows through China, India, and Pakistan, is mainly fed by melting snow and glaciers that are spread across the Hindukush–Karakoram–Himalaya Mountains. The downstream population of the Indus Plain heavily relies on this water resource for drinking, irrigation, and hydropower [...] Read more.
The Indus River, which flows through China, India, and Pakistan, is mainly fed by melting snow and glaciers that are spread across the Hindukush–Karakoram–Himalaya Mountains. The downstream population of the Indus Plain heavily relies on this water resource for drinking, irrigation, and hydropower generation. Therefore, its river runoff variability must be properly monitored. Gilgit Basin, the northwestern part of the Upper Indus Basin, is selected for studying cryosphere dynamics and its implications on river runoff. In this study, 8-day snow products (MOD10A2) of moderate resolution imaging spectroradiometer, from 2001 to 2015 are selected to access the snow-covered area (SCA) in the catchment. A non-parametric Mann–Kendall test and Sen’s slope are calculated to assess whether a significant trend exists in the SCA time series data. Then, data from ground observatories for 1995–2013 are analyzed to demonstrate annual and seasonal signals in air temperature and precipitation. Results indicate that the annual and seasonal mean of SCA show a non-significant decreasing trend, but the autumn season shows a statistically significant decreasing SCA with a slope of −198.36 km2/year. The annual mean temperature and precipitation show an increasing trend with highest values of slope 0.05 °C/year and 14.98 mm/year, respectively. Furthermore, Pearson correlation coefficients are calculated for the hydro-meteorological data to demonstrate any possible relationship. The SCA is affirmed to have a highly negative correlation with mean temperature and runoff. Meanwhile, SCA has a very weak relation with precipitation data. The Pearson correlation coefficient between SCA and runoff is −0.82, which confirms that the Gilgit River runoff largely depends on the melting of snow cover rather than direct precipitation. The study indicates that the SCA slightly decreased for the study period, which depicts a possible impact of global warming on this mountainous region. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 39877 KB  
Article
Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin
by Iqra Atif, Javed Iqbal and Muhammad Ahsan Mahboob
Atmosphere 2018, 9(5), 162; https://doi.org/10.3390/atmos9050162 - 26 Apr 2018
Cited by 28 | Viewed by 5663
Abstract
The Upper Indus basin (UIB) is characterized by contrasting hydrometeorological behaviors; therefore, it has become pertinent to understand hydrometeorological trends at the sub-watershed level. Many studies have investigated the snow cover and hydrometeorological modeling at basin level but none have reported the spatial [...] Read more.
The Upper Indus basin (UIB) is characterized by contrasting hydrometeorological behaviors; therefore, it has become pertinent to understand hydrometeorological trends at the sub-watershed level. Many studies have investigated the snow cover and hydrometeorological modeling at basin level but none have reported the spatial variability of trends and their magnitude at a sub-basin level. This study was conducted to analyze the trends in the contrasting hydrological regimes of the snow and glacier-fed river catchments of the Hunza and Astore sub-basins of the UIB. Mann-Kendall and Sen’s slope methods were used to study the main trends and their magnitude using MODIS snow cover information (2001–2015) and hydrometeorological data. The results showed that in the Hunza basin, the river discharge and temperature were significantly (p ≤ 0.05) decreased with a Sen’s slope value of −2.541 m3·s−1·year−1 and −0.034 °C·year−1, respectively, while precipitation data showed a non-significant (p ≥ 0.05) increasing trend with a Sen’s slope value of 0.023 mm·year−1. In the Astore basin, the river discharge and precipitation are increasing significantly (p ≤ 0.05) with a Sen’s slope value of 1.039 m3·s−1·year−1 and 0.192 mm·year−1, respectively. The snow cover analysis results suggest that the Western Himalayas (the Astore basin) had a stable trend with a Sen’s slope of 0.07% year−1 and the Central Karakoram region (the Hunza River basin) shows a slightly increasing trend with a Sen’s slope of 0.394% year−1. Based on the results of this study it can be concluded that since both sub-basins are influenced by different climatological systems (monsoon and westerly), the results of those studies that treat the Upper Indus basin as one unit in hydrometeorological modeling should be used with caution. Furthermore, it is suggested that similar studies at the sub-basin level of the UIB will help in a better understanding of the Karakoram anomaly. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop