Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Utilized
2.2.1. Hydrometeorological Data
2.2.2. Snow Cover Data
2.3. Methodology
2.3.1. Data Homogeneity Test
2.3.2. Trend Analysis
2.3.3. Sen’s Slope Estimator
3. Results and Discussion
3.1. Trend Analysis of Hydrometeorological Data
3.1.1. Hunza Sub-Basin
3.1.2. Astore Sub-Basin
3.2. Spatial Variability Analysis of Snow Cover of the Hunza and Astore Sub-Basins
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Hassan, J.; Kayastha, R.B.; Shrestha, A.; Bano, I.; Ali, S.H.; Magsi, H.Z. Predictions of future hydrological conditions and contribution of snow and ice melt in total discharge of Shigar River Basin in Central Karakoram, Pakistan. Sci. Cold Arid Reg. 2017, 9, 511–524. [Google Scholar]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- Hewitt, K. The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mount. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef]
- Hewitt, K. Tributary glacier surges: An exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Archer, D. Contrasting hydrological regimes in the upper Indus Basin. J. Hydrol. 2003, 274, 198–210. [Google Scholar] [CrossRef]
- Forsythe, N.; Kilsby, C.G.; Fowler, H.J.; Archer, D.R. Assessment of runoff sensitivity in the Upper Indus Basin to interannual climate variability and potential change using MODIS satellite data products. Mount. Res. Dev. 2012, 32, 16–29. [Google Scholar] [CrossRef]
- Winiger, M.; Gumpert, M.; Yamout, H. Karakorum–Hindukush–western Himalaya: Assessing high-altitude water resources. Hydrol. Process. 2005, 19, 2329–2338. [Google Scholar] [CrossRef]
- Wake, C.P. Glaciochemical investigations as a tool for determining the spatial and seasonal variation of snow accumulation in the central Karakoram, northern Pakistan. Ann. Glaciol. 1989, 13, 279–284. [Google Scholar] [CrossRef]
- Immerzeel, W.; Wanders, N.; Lutz, A.; Shea, J.; Bierkens, M. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 2015, 19, 4673–4687. [Google Scholar] [CrossRef]
- Tahir, A.A.; Adamowski, J.F.; Chevallier, P.; Haq, A.U.; Terzago, S. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush–Karakoram–Himalaya region, Pakistan). Meteorol. Atmos. Phys. 2016, 128, 793–811. [Google Scholar] [CrossRef]
- Fleming, S.W.; Hood, E.; Dahlke, H.; O’Neel, S. Seasonal flows of international British Columbia-Alaska rivers: The nonlinear influence of ocean-atmosphere circulation patterns. Adv. Water Resour. 2016, 87, 42–55. [Google Scholar] [CrossRef]
- Van Wilgen, N.J.; Goodall, V.; Holness, S.; Chown, S.L.; McGeoch, M.A. Rising temperatures and changing rainfall patterns in South Africa’s national parks. Int. J. Climatol. 2016, 36, 706–721. [Google Scholar] [CrossRef]
- Sharma, C.S.; Panda, S.N.; Pradhan, R.P.; Singh, A.; Kawamura, A. Precipitation and temperature changes in eastern India by multiple trend detection methods. Atmos. Res. 2016, 180, 211–225. [Google Scholar] [CrossRef]
- Fowler, H.; Archer, D. Conflicting signals of climatic change in the Upper Indus Basin. J. Clim. 2006, 19, 4276–4293. [Google Scholar] [CrossRef]
- Bocchiola, D.; Diolaiuti, G. Recent (1980–2009) evidence of climate change in the upper Karakoram, Pakistan. Theor. Appl. Climatol. 2013, 113, 611–641. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Brooks, H.; Kossin, J.; Lawrimore, J.H.; Arndt, D.; Bosart, L.; Changnon, D.; Cutter, S.L.; Doesken, N. Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Am. Meteorol. Soc. 2013, 94, 499–514. [Google Scholar] [CrossRef]
- Blain, G.C. The influence of nonlinear trends on the power of the trend-free pre-whitening approach. Acta Sci. Agron. 2015, 37, 21–28. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Bhutiyani, M.R. Climate change in the Northwestern Himalayas. In Dynamics of Climate Change and Water Resources of Northwestern Himalaya; Springer: Cham, Switzerland, 2015; pp. 85–96. [Google Scholar]
- Panthi, J.; Dahal, P.; Shrestha, M.L.; Aryal, S.; Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.; Jha, A.K.; Sharma, M.; Karki, R. Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate 2015, 3, 210–226. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Zarei, A.R.; Moghimi, M.M.; Mahmoudi, M.R. Parametric and Non-Parametric Trend of Drought in Arid and Semi-Arid Regions Using RDI Index. Water Resour. Manag. 2016, 30, 5479–5500. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Jain, S.K.; Kumar, V. Trend analysis of rainfall and temperature data for India. Curr. Sci. 2012, 102, 37–49. [Google Scholar]
- Salmi, M.; Auslender, F.; Bornert, M.; Fogli, M. Various estimates of Representative Volume Element sizes based on a statistical analysis of the apparent behavior of random linear composites. C. R. Méc. 2012, 340, 230–246. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Dutta, D. Mann–kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different arima models. Environ. Monit. Assess. 2014, 186, 4719–4742. [Google Scholar] [CrossRef] [PubMed]
- Drápela, K.; Drápelová, I. Application of mann-kendall test and the Sen’s slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Beskydy 2011, 4, 133–146. [Google Scholar]
- Kumar, R.; Farooq, Z.; Jhajharia, D.; Singh, V. Trends in temperature for the Himalayan environment of Leh (Jammu and Kashmir), India. In Climate Change Impacts; Springer: Singapore, 2018; pp. 3–13. [Google Scholar]
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Ma, Y.; Nie, J. Vegetation dynamics in qinling-daba mountains in relation to climate factors between 2000 and 2014. J. Geogr. Sci. 2016, 26, 45–58. [Google Scholar] [CrossRef]
- Saavedra, F.A.; Kampf, S.K.; Fassnacht, S.R.; Sibold, J.S. Changes in ANDES snow cover from MODIS data, 2000–2016. Cryosphere 2018, 12, 1027–1046. [Google Scholar] [CrossRef]
- Sirguey, P.; Mathieu, R.; Arnaud, Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ. 2009, 113, 160–181. [Google Scholar] [CrossRef]
- Atif, I.; Mahboob, M.A.; Iqbal, J. Snow cover area change assessment in 2003 and 2013 using MODIS data of the Upper Indus Basin, Pakistan. J. Himal. Earth Sci. 2015, 48, 117–128. [Google Scholar]
- Cheema, M.J.M.; Bastiaanssen, W.G. Local calibration of remotely sensed rainfall from the trmm satellite for different periods and spatial scales in the indus basin. Int. J. Remote Sens. 2012, 33, 2603–2627. [Google Scholar] [CrossRef]
- Hewitt, K.; Wake, C.P.; Young, G.; David, C. Hydrological investigations at Biafo Glacier, Karakoram Range, Himalaya; an important source of water for the Indus River. Ann. Glaciol. 1989, 13, 103–108. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Førland, E.; Allerup, P.; Dahlström, B.; Elomaa, E.; Jónsson, T.; Madsen, H.; Perälä, J.; Rissanen, P.; Vedin, H.; Vejen, F. Manual for operational correction of Nordic precipitation data. DNMI Rep. 1996, 24, 96. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. Modis snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Liang, T. Evaluation of MODIS snow cover and cloud mask and its application in northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1497–1513. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Liu, T. Monitoring recent changes in snow cover in central Asia using improved MODIS snow-cover products. J. Arid Land 2017, 9, 763–777. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, C.; Ticehurst, C.; Merrin, L.; Thew, P. An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping. Wetlands 2013, 33, 823–835. [Google Scholar] [CrossRef]
- Hasson, S.; Böhner, J.; Lucarini, V. Prevailing climatic trends and runoff response from Hindukush–Karakoram–Himalaya, Upper Indus Basin. Earth Syst. Dyn. 2017, 8, 337–355. [Google Scholar] [CrossRef]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Ashraf, M.; Bhatti, M.T. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). Sci. Total Environ. 2015, 505, 748–761. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Yusof, F. Homogeneity tests on daily rainfall series. Int. J. Contemp. Math. Sci. 2012, 7, 9–22. [Google Scholar]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability; Springer: Berlin, Germany, 1999; pp. 11–26. [Google Scholar]
- Yue, S.; Wang, C.Y. Applicability of Prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 1068. [Google Scholar] [CrossRef]
- Minitab 18 Statistical Software [Computer Software]; State College PM, Inc.: State College, PA, USA, 2018.
- Barua, S.; Muttil, N.; Ng, A.; Perera, B. Rainfall trend and its implications for water resource management within the Yarra River catchment, Australia. Hydrol. Process. 2013, 27, 1727–1738. [Google Scholar] [CrossRef]
- Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar]
- Hussain, S.S.; Mudasser, M.; Sheikh, M.; Manzoor, N. Climate change and variability in mountain regions of Pakistan implications for water and agriculture. Pak. J. Meteorol. 2005, 2, 75–90. [Google Scholar]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Archer, D.R.; Fowler, H.J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. Discuss. 2004, 8, 47–61. [Google Scholar] [CrossRef]
- Oouchi, K.; Noda, A.T.; Satoh, M.; Wang, B.; Xie, S.P.; Takahashi, H.G.; Yasunari, T. Asian summer monsoon simulated by a global cloud-system-resolving model: Diurnal to intra-seasonal variability. Geophys. Res. Lett. 2009, 36, 269–271. [Google Scholar] [CrossRef]
- Tiwari, S.; Kar, S.C.; Bhatla, R. Atmospheric moisture budget during winter seasons in the western himalayan region. Clim. Dyn. 2017, 48, 1277–1295. [Google Scholar] [CrossRef]
- Chevallier, P.; Arnaud, Y.; Ahmad, B. Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 2259–2274. [Google Scholar]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in Swat River Basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef]
Zone | A (Low-Altitude Zone) | B (Mid-Altitude Zone) | C (High-Altitude Zone) | |||
---|---|---|---|---|---|---|
Basin | Astore | Hunza | Astore | Hunza | Astore | Hunza |
Elevation band (m) | 1213–3300 | 1432–3300 | 3301–4300 | 3301–4300 | 4301–8069 | 4301–7849 |
Mean elevation (m) | ~2950 | ~2850 | ~3910 | ~3850 | ~4600 | ~5000 |
Median elevation (m) | ~2263 | ~2366 | ~3800 | ~3800 | ~6132 | ~6067 |
Area (%) | 16 | 11 | 50 | 25 | 34 | 64 |
Area (km2) | 638 | 1541 | 1995 | 3413 | 1357 | 8779 |
Stations | Spring | Summer | Fall | Winter | Annual | ||
---|---|---|---|---|---|---|---|
Ziarat | Tmin | Trend | 0.71 ↑ | −0.82 ↓ | 0.38 ↑ | 1.20 ↑ | 0.99 ↑ |
Sen’s Slope | 0.03 | −0.05 | 0.01 | 0.08 | 0.06 | ||
Tmax | Trend | 0.71 ↑ | −0.49 ↓ | 0.05 ↑ | 0 | 0 | |
Sen’s Slope | 0.032 | −0.049 | 0.002 | −0.016 | −0.008 | ||
Tavg | Trend | 0.82 ↑ | −0.60 ↓ | 0.16 ↑ | 0.33 ↑ | 0.44 ↑ | |
Sen’s Slope | 0.031 | −0.057 | 0.006 | 0.03 | 0.037 | ||
Precipitation | Trend | 0.99 ↑ | 0.22 ↑ | −0.44 ↓ | 2.30 * ↑ | 0.77 ↑ | |
Sen’s Slope | 0.032 | 0.006 | −0.008 | 0.133 | 0.026 | ||
Naltar | Tmin | Trend | −1.04 ↓ | −0.82 ↓ | −2.25 ↓ | −1.86 ↓ | −2.30 * ↓ |
Sen’s Slope | −0.066 | −0.044 | −0.155 | −0.135 | −0.144 | ||
Tmax | Trend | −0.82 ↓ | −0.05 ↓ | −1.48 ↓ | −1.64 ↓ | −1.86 ↓ | |
Sen’s Slope | −0.047 | −0.02 | −0.066 | −0.113 | −0.075 | ||
Tavg | Trend | −1.04 ↓ | −1.59 ↓ | −2.14 * ↓ | −2.41 * ↓ | −2.08 * ↓ | |
Sen’s Slope | −0.159 | −0.201 | −0.158 | −0.142 | −0.155 | ||
Precipitation | Trend | −1.20 ↓ | 0.00 | −1.04 ↓ | 1.09 ↑ | −0.22 ↓ | |
Sen’s Slope | −0.115 | −0.004 | −0.036 | 0.063 | −0.006 | ||
Khunjerab | Tmin | Trend | 2.41 * ↑ | 1.20 ↑ | 0.55 ↑ | 1.20 ↑ | 2.41 * ↑ |
Sen’s Slope | 0.273 | 0.084 | 0.019 | 0.111 | 0.145 | ||
Tmax | Trend | 0.88 ↑ | 0.55 ↑ | 0.11 ↑ | −0.55 ↓ | 0.11 ↑ | |
Sen’s Slope | 0.037 | 0.012 | 0.014 | −0.058 | 0.01 | ||
Tavg | Trend | 2.52 * ↑ | 1.31 ↑ | 0.33 ↑ | 0.77 ↑ | 1.75 ↑ | |
Sen’s Slope | 0.228 | 0.07 | 0.024 | 0.065 | 0.068 | ||
Precipitation | Trend | 1.86 ↑ | −2.30 * ↓ | 0.33 ↑ | 1.86 ↑ | 0.88 ↑ | |
Sen’s Slope | 0.03 | −0.036 | 0.005 | 0.055 | 0.011 | ||
Danyour Bridge | Trend | 0.57 ↑ | −3.13 ** ↓ | −1.64 ↓ | −0.16 ↓ | −2.94 ** ↓ | |
Discharge | Sen’s Slope | 0.121 | −10.148 | −0.81 | −0.011 | −2.541 | |
Hunza River Basin (Overall Statistics) | Tavg | Trend | 0.44 ↑ | −1.09 ↓ | −1.09 ↓ | −0.44 ↓ | −0.77 ↓ |
Sen’s Slope | 0.033 | −0.058 | −0.046 | −0.047 | −0.034 | ||
Precipitation | Trend | −0.11 ↓ | −0.44 ↓ | −0.44 ↓ | 2.52 * ↑ | 1.09 ↑ | |
Sen’s Slope | −0.012 | −0.014 | −0.009 | 0.103 | 0.023 |
Climatic Station | Spring | Summer | Fall | Winter | Annual | ||
---|---|---|---|---|---|---|---|
Rattu | Tmin | Trend | −0.55 ↓ | 0.11 ↑ | −0.11 ↓ | −0.11 ↓ | −1.09 ↓ |
Sen’s Slope | −0.052 | 0.018 | −0.014 | −0.022 | −0.031 | ||
Tmax | Trend | −0.88 ↓ | 0.99 ↑ | −0.44 ↓ | 1.31 ↑ | 1.86 + ↑ | |
Sen’s Slope | −0.113 | 0.061 | −0.018 | 0.101 | 0.046 | ||
Tavg | Trend | −0.99 ↓ | 0.88 ↑ | −0.22 ↓ | 0.77 ↑ | 1.09 ↑ | |
Sen’s Slope | −0.061 | 0.052 | −0.007 | 0.068 | 0.032 | ||
Precipitation | Trend | 1.09 ↑ | 1.42 ↑ | 0 | 1.20 ↑ | 1.53 ↑ | |
Sen’s Slope | 0.133 | 0.118 | −0.018 | 0.219 | 0.128 | ||
Rama | Tmin | Trend | −0.11 ↓ | 0.05 ↑ | 0.99 ↑ | −0.33 ↓ | 0.55 ↑ |
Sen’s Slope | −0.017 | 0.014 | 0.05 | −0.044 | 0.008 | ||
Tmax | Trend | −0.99 ↓ | 1.04 ↑ | 1.09 ↑ | 0.99 ↑ | 2.08 * ↑ | |
Sen’s Slope | −0.096 | 0.026 | 0.065 | 0.102 | 0.081 | ||
Tavg | Trend | −0.22 ↓ | 0.16 ↑ | 0 | 0.77 ↑ | 1.53 ↑ | |
Sen’s Slope | −0.055 | 0.015 | 0.001 | 0.074 | 0.035 | ||
Precipitation | Trend | −0.55 ↓ | −0.38 ↓ | 0.55 ↑ | 1.31 ↑ | 0.11 ↑ | |
Sen’s Slope | −0.047 | −0.001 | 0.036 | 0.131 | 0.018 | ||
Doyian | Discharge | Trend | 3.80 ** ↑ | 1.14 ↑ | 2.15 * ↑ | 2.03 * ↑ | 2.44 * ↑ |
Bridge | Sen’s Slope | 1.506 | 1.312 | 0.708 | 0.208 | 1.039 | |
Astore River Basin (Overall Statistics) | Tavg | Trend | −0.77 ↓ | 0.66 ↑ | 0.66 ↑ | 0.77 ↑ | 1.75 † ↑ |
Sen’s Slope | −0.065 | 0.034 | 0.016 | 0.064 | 0.041 | ||
Precipitation | Trend | 2.30 * ↑ | 2.85 ** ↑ | 3.07 ** ↑ | 0.99 ↑ | 2.74 ** ↑ | |
Sen’s Slope | 0.268 | 0.103 | 0.243 | 0.103 | 0.192 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atif, I.; Iqbal, J.; Mahboob, M.A. Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin. Atmosphere 2018, 9, 162. https://doi.org/10.3390/atmos9050162
Atif I, Iqbal J, Mahboob MA. Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin. Atmosphere. 2018; 9(5):162. https://doi.org/10.3390/atmos9050162
Chicago/Turabian StyleAtif, Iqra, Javed Iqbal, and Muhammad Ahsan Mahboob. 2018. "Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin" Atmosphere 9, no. 5: 162. https://doi.org/10.3390/atmos9050162
APA StyleAtif, I., Iqbal, J., & Mahboob, M. A. (2018). Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin. Atmosphere, 9(5), 162. https://doi.org/10.3390/atmos9050162