Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = geostationary satellite Himawari-8

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2913 KB  
Article
Emissivity-Driven Directional Biases in Geostationary Satellite Land Surface Temperature: Integrated Comparison and Parametric Analysis Across Complex Terrain in Hunan, China
by Jiazhi Fan, Qinzhe Han, Bing Sui, Leishi Chen, Luping Yang, Guanru Lv, Bi Zhou and Enguang Li
Remote Sens. 2026, 18(2), 284; https://doi.org/10.3390/rs18020284 - 15 Jan 2026
Viewed by 185
Abstract
Land surface temperature (LST) is fundamental for monitoring surface energy balance and environmental dynamics, with remote sensing providing the primary means of acquisition. However, directional anisotropy (DA) introduces systematic bias in satellite-derived LST products, particularly over complex landscapes. This study examines the impact [...] Read more.
Land surface temperature (LST) is fundamental for monitoring surface energy balance and environmental dynamics, with remote sensing providing the primary means of acquisition. However, directional anisotropy (DA) introduces systematic bias in satellite-derived LST products, particularly over complex landscapes. This study examines the impact of angular effects on LST retrievals from three leading East Asian geostationary satellites (FengYun 4A, FengYun 4B, and Himawari 9) across Hunan Province, China, using integrated comparison with in situ measurements and reanalysis data. Results show that all products exhibit a systematic cold bias, with FY4B achieving the highest accuracy. Diurnal retrieval precision increases with higher solar zenith angles (SZA), while no consistent relationship is observed between viewing zenith angle (VZA) and retrieval accuracy. Notably, the retrieval bias of the FY4 series increases significantly when the sun and sensor are aligned in azimuth, particularly when the relative azimuth angle (RAA) is less than or equal to 30°. Parametric modeling reveals that emissivity kernel-induced anisotropy is the principal driver of significant LST deviations in central Hunan, while solar kernel effects result in LST overestimation in mountainous regions and underestimation in plains. Increases in elevation or vegetation density reduce emissivity-induced errors but amplify errors caused by shadowing and sunlit effects. Emissivity anisotropy is thus identified as the primary source of LST DA. These findings deepen the understanding of LST DA in remote sensing and provide essential guidance for refining retrieval algorithms and improving the applicability of LST products in complex terrains. Full article
Show Figures

Figure 1

22 pages, 19079 KB  
Article
Fused Satellite Fire Products Reveal Fire Diurnal Cycles and Improve Fire Emission Estimates over North America and East Asia
by Lu Gui, Rong Li, Minghui Tao, Liping Feng, Wenjing Man, Yi Wang, Zhe Jiang and Yingying Jing
Remote Sens. 2026, 18(1), 52; https://doi.org/10.3390/rs18010052 - 24 Dec 2025
Viewed by 279
Abstract
Estimating biomass burning emissions remains challenging due to both the substantial spatiotemporal variability of fires and the inherent uncertainties associated with the limited overpass frequency of polar-orbiting satellites. Integrating geostationary (5–10 min, 2 km) and polar-orbiting (twice daily, 375 m) satellite observations provides [...] Read more.
Estimating biomass burning emissions remains challenging due to both the substantial spatiotemporal variability of fires and the inherent uncertainties associated with the limited overpass frequency of polar-orbiting satellites. Integrating geostationary (5–10 min, 2 km) and polar-orbiting (twice daily, 375 m) satellite observations provides a detailed characterization of active fire diurnal cycles. However, the conventional unimodal Gaussian approximation (Pol/Geo-Uni), commonly used in fire emission models, fails to accurately reproduce the diurnal patterns. This study systematically analyzed the seasonal and diurnal variation in different types of active fires (AFs) and fire radiative power (FRP) across North America (GOES-16, ABI) and East Asia (Himawari-8, AHI). In North America, forest and savanna fires exhibited high FRP and a pronounced bimodal diurnal cycle lasting 4–8 h, whereas the corresponding fire types in East Asia exhibited a shorter, unimodal pattern of 2–4 h. Agricultural fires in East Asia were predominantly small in scale with low FRP, and frequently occurred at night. We used a modified Gaussian function to estimate dry matter burned (DMB), quantitating regional emission impacts for different fire types. The fused product (VIIRS/ABI-Bi) yielded amounts of DMB in North America that was 1.22 and 1.24 times higher than that from VIIRS/ABI-Uni and GFASv1.2, respectively. In East Asia, VIIRS/AHI-Bi DMB exceeded those from VIIRS/AHI-Uni and GFASv1.2 by 1.08 and 0.94 times, with agricultural fire estimates during the fire season being 1.18–1.62 times higher. This increase was notably pronounced in eastern China, where VIIRS/AHI-Bi DMB reached 1.76 to 9.77 times higher than estimates from VIIRS/AHI-Uni, GFED5, GFED4.1s, and GFASv1.2. Overall, integrating high spatiotemporal resolution satellite fire products with regionally diurnal models can substantially improve emission estimates, particularly for frequent, small-scale fire events. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

21 pages, 4539 KB  
Article
Physics-Informed Deep Learning for 3D Wind Field Retrieval of Open-Ocean Typhoons
by Xingyu Zhang, Tian Zhang, Shitang Ke, Houtian He, Ruihan Zhang, Yongqi Miao and Teng Liang
Remote Sens. 2025, 17(23), 3825; https://doi.org/10.3390/rs17233825 - 26 Nov 2025
Viewed by 693
Abstract
Accurate retrieval of three-dimensional (3D) typhoon wind fields over the open ocean remains a critical challenge due to observational gaps and physical inconsistencies in existing methods. Based on multi-channel data from the Himawari-8/9 geostationary satellites, this study proposes a physics-informed deep learning framework [...] Read more.
Accurate retrieval of three-dimensional (3D) typhoon wind fields over the open ocean remains a critical challenge due to observational gaps and physical inconsistencies in existing methods. Based on multi-channel data from the Himawari-8/9 geostationary satellites, this study proposes a physics-informed deep learning framework for high-resolution 3D wind field reconstruction of open-ocean typhoons. A convolutional neural network was designed to establish an end-to-end mapping from 16-channel satellite imagery to the 3D wind field across 16 vertical levels. To enhance physical consistency, the continuity equation, enforcing mass conservation, was embedded as a strong constraint into the loss function. Four experimental scenarios were designed to evaluate the contributions of multi-channel data and physical constraints. Results demonstrate that the full model, integrating both visible/infrared channels and the physical constraint, achieved the best performance, with mean absolute errors of 2.73 m/s and 2.54 m/s for U- and V-wind components, respectively. This represents significant improvements over the baseline infrared-only model (29.6% for U, 21.6% for V), with notable error reductions in high-wind regions (>20 m/s). The approach effectively captures fine-scale structures like eyewalls and spiral rainbands while maintaining vertical physical coherence, offering a robust foundation for typhoon monitoring and reanalysis. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

24 pages, 26775 KB  
Article
Robust Synthesis Weather Radar from Satellite Imagery: A Light/Dark Classification and Dual-Path Processing Approach
by Wei Zhang, Hongbo Ma, Yanhai Gan, Junyu Dong, Renbo Pang, Xiaojiang Song, Cong Liu and Hongmei Liu
Remote Sens. 2025, 17(21), 3609; https://doi.org/10.3390/rs17213609 - 31 Oct 2025
Viewed by 707
Abstract
Weather radar reflectivity plays a critical role in precipitation estimation and convective storm identification. However, due to terrain limitations and the uneven spatial distribution of radar stations, oceanic regions have long suffered from a lack of radar observations, resulting in extensive monitoring gaps. [...] Read more.
Weather radar reflectivity plays a critical role in precipitation estimation and convective storm identification. However, due to terrain limitations and the uneven spatial distribution of radar stations, oceanic regions have long suffered from a lack of radar observations, resulting in extensive monitoring gaps. Geostationary meteorological satellites have wide-area coverage and near-real-time observation capability, offering a viable solution for synthesizing radar reflectivity in these regions. Most previous synthesis studies have adopted fixed time-window data partitioning, which introduces significant noise into visible-light observations under large-scale, low-illumination conditions, thereby degrading synthesis quality. To address this issue, we propose an integrated deep-learning method that combines illumination-based classification and reflectivity synthesis to enhance the accuracy of radar reflectivity synthesis from geostationary meteorological satellites. This approach integrates a classification network with a synthesis network. First, visible-light observations from the Himawari-8 satellite are classified based on illumination conditions to separate valid signals from noise; then, noise-free infrared observations and multimodal fused data are fed into dedicated synthesis networks to generate composite reflectivity products. In experiments, the proposed method outperformed the baseline approach in regions with strong convection (≥35 dBZ), with a 9.5% improvement in the critical success index, a 7.5% increase in the probability of detection, and a 6.1% reduction in the false alarm rate. Additional experiments confirmed the applicability and robustness of the method across various complex scenarios. Full article
Show Figures

Figure 1

20 pages, 8107 KB  
Article
Geostationary Satellite-Derived Diurnal Cycles of Photosynthesis and Their Drivers in a Subtropical Forest
by Jiang Xu, Xi Dai, Zhibin Liu, Chenyang He, Enze Song and Kun Huang
Remote Sens. 2025, 17(17), 3079; https://doi.org/10.3390/rs17173079 - 4 Sep 2025
Viewed by 1731
Abstract
Tropical and subtropical forests account for approximately one-third of global terrestrial gross primary productivity (GPP), and the diurnal patterns of GPP strongly regulate the land–atmosphere CO2 interactions and feedback to the climate. Combined with ground eddy-covariance (EC) flux towers, geostationary satellites offer [...] Read more.
Tropical and subtropical forests account for approximately one-third of global terrestrial gross primary productivity (GPP), and the diurnal patterns of GPP strongly regulate the land–atmosphere CO2 interactions and feedback to the climate. Combined with ground eddy-covariance (EC) flux towers, geostationary satellites offer significant advantages for continuously monitoring these diurnal variations in the “breathing of biosphere”. Here we utilized half-hourly optical signals from the Himawari-8 Advanced Himawari Imager (H8/AHI) geostationary satellite and tower-based EC flux data to investigate the diurnal variations in subtropical forest GPP and its drivers. Results showed that three machine learning models well estimated the diurnal patterns of subtropical forest GPP, with the determination coefficient (R2) ranging from 0.71 to 0.76. Photosynthetically active radiation (PAR) is the primary driver of the diurnal cycle of GPP, modulated by temperature, soil water content, and vapor pressure deficit. Moreover, the effect magnitude of PAR on GPP varies across three timescales. This study provides robust technical support for diurnal forest GPP estimations and the possibility for large-scale estimations of diurnal GPP over tropics in the future. Full article
Show Figures

Figure 1

25 pages, 8562 KB  
Article
Deep-Learning-Based Multi-Channel Satellite Precipitation Forecasting Enhanced by Cloud Phase Classification
by Yuhang Jiang, Wei Cheng, Shudong Wang, Shuangshuang Bian, Jingzhe Sun, Yayun Li and Juanjuan Liu
Remote Sens. 2025, 17(16), 2853; https://doi.org/10.3390/rs17162853 - 16 Aug 2025
Viewed by 2052
Abstract
Clouds are closely related to precipitation, as their type, microphysical characteristics, and dynamic properties determine the intensity, duration, and form of rainfall. While geostationary satellites offer continuous cloud-top observations, they cannot capture the full three-dimensional structure of clouds, limiting the accuracy of precipitation [...] Read more.
Clouds are closely related to precipitation, as their type, microphysical characteristics, and dynamic properties determine the intensity, duration, and form of rainfall. While geostationary satellites offer continuous cloud-top observations, they cannot capture the full three-dimensional structure of clouds, limiting the accuracy of precipitation forecasting based on geostationary satellite data. However, cloud–precipitation relationships contain valuable physical information that can be leveraged to improve forecasting performance. To further enhance the precision of satellite precipitation forecasting, this study proposes a multi-channel satellite precipitation forecasting method that integrates cloud classification products. The method combines precipitation-prior information from Himawari-8 satellite cloud classification products with multi-channel satellite observations to generate precipitation forecasts for the next four hours. This approach further exploits the potential of satellite observations in precipitation forecasting. Experimental results show that integrating cloud classification products improves the Critical Success Index by 8.0%, improves the Correlation Coefficient by 5.8%, and reduces the Mean Squared Error by 3.0%, but increases the MAE by 4.5%. It is proven that this method can effectively improve the accuracy of multi-channel satellite precipitation forecasting. Full article
Show Figures

Figure 1

18 pages, 7358 KB  
Article
On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
by Tingting Ye, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu and Jianping Guo
Remote Sens. 2025, 17(14), 2469; https://doi.org/10.3390/rs17142469 - 16 Jul 2025
Viewed by 856
Abstract
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager [...] Read more.
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager (AHI). The algorithm is featured by integrating deep learning techniques with a physical model. The algorithm first utilizes a convolutional neural network-based model to extract cloud top height (CTH) and cloud water path (CWP) from the AHI infrared observations. Then, a physical model is introduced to relate cloud geometric thickness (CGT) to CWP by constructing a look-up table of effective cloud water content (ECWC). Thus, the CBH can be obtained by subtracting CGT from CTH. The results demonstrate good agreement between our AHI CBH retrievals and the spaceborne active remote sensing measurements, with a mean bias of −0.14 ± 1.26 km for CloudSat-CALIPSO observations at daytime and −0.35 ± 1.84 km for EarthCARE measurements at nighttime. Additional validation against ground-based millimeter wave cloud radar (MMCR) measurements further confirms the effectiveness and reliability of the proposed algorithm across varying atmospheric conditions and temporal scales. Full article
Show Figures

Graphical abstract

24 pages, 6323 KB  
Article
Estimating PM2.5 Exposures and Cardiovascular Disease Risks in the Yangtze River Delta Region Using a Spatiotemporal Convolutional Approach to Fill Gaps in Satellite Data
by Muhammad Jawad Hussain, Myeongsu Seong, Behjat Shahid and Heming Bai
Toxics 2025, 13(5), 392; https://doi.org/10.3390/toxics13050392 - 14 May 2025
Cited by 2 | Viewed by 913
Abstract
Accurate estimation of ambient PM2.5 concentrations is crucial for assessing air quality and health risks, particularly in regions with limited ground-based monitoring. Satellite-retrieved data products, such as top-of-atmosphere reflectance (TOAR) and aerosol optical depth (AOD), are widely used for PM2.5 estimation. [...] Read more.
Accurate estimation of ambient PM2.5 concentrations is crucial for assessing air quality and health risks, particularly in regions with limited ground-based monitoring. Satellite-retrieved data products, such as top-of-atmosphere reflectance (TOAR) and aerosol optical depth (AOD), are widely used for PM2.5 estimation. However, complex atmospheric conditions cause retrieval gaps in TOAR and AOD products, limiting their reliability. This study introduced a spatiotemporal convolutional approach to fill sampling gaps in TOAR and AOD data from the Himawari-8 geostationary satellite over the Yangtze River Delta (YRD) in 2016. Four machine-learning models (random forest, extreme gradient boosting, gradient boosting, and support vector regression) were used to estimate hourly PM2.5 concentrations by integrating gap-filled and original TOAR and AOD data with meteorological variables. The random forest model trained on gap-filled TOAR data yielded the highest predictive accuracy (R2 = 0.75, RMSE = 18.30 μg m−3). Significant seasonal variations in PM2.5 estimates were found, with TOAR-based models outperforming AOD-based models. Furthermore, we observed that a substantial portion of the YRD population in non-attainment areas is at risk of cardiovascular disease due to chronic PM2.5 exposure. This study suggests that TOAR-based models offer more reliable PM2.5 estimates, enhancing air-quality assessments and public health-risk evaluations. Full article
Show Figures

Graphical abstract

25 pages, 16504 KB  
Article
High-Resolution, Low-Latency Multi-Satellite Precipitation Merging by Correcting with Weather Radar Network Data
by Seungwoo Baek, Soorok Ryu, Choeng-Lyong Lee, Francisco J. Tapiador and Gyuwon Lee
Remote Sens. 2025, 17(10), 1702; https://doi.org/10.3390/rs17101702 - 13 May 2025
Cited by 1 | Viewed by 2495
Abstract
Satellite-based precipitation products (SPPs) have become a crucial source of quantitative global precipitation data. Geostationary Orbit (GEO) satellites provide high spatiotemporal resolution but tend to have lower accuracy, while Low Earth Orbit (LEO) satellites provide more precise precipitation estimates but suffer from lower [...] Read more.
Satellite-based precipitation products (SPPs) have become a crucial source of quantitative global precipitation data. Geostationary Orbit (GEO) satellites provide high spatiotemporal resolution but tend to have lower accuracy, while Low Earth Orbit (LEO) satellites provide more precise precipitation estimates but suffer from lower temporal resolution due to their limited observation frequency. This study proposes an efficient algorithm for integrating and enhancing precipitation estimates from multiple satellite observations. The target domain includes the Full Disk (FD) and the extended East Asia (EA) regions, both of which are observable by GEO satellites, such as Himawari-8, serving as the GEO platform in this study. The algorithm involves four steps: pre-data preparation, LEO morphing, adjustment, and final merging. It produces Early and Late composite products with 10-min temporal and up to 2 km spatial resolution and significantly reduces latency compared to IMERG. Specifically, the Early and Late products can be generated with approximate latencies of 90 min and 270 min, respectively—much faster than Integrated Multi-satellite Retrievals for GPM (IMERG)’s Early (4-h) and Late (14-h) products. A key feature of the proposed method is the use of accuracy-based weighting derived from radar-based validation, enabling dynamic merging that reflects the reliability of each satellite observation. Statistical validation using Global Telecommunication System (GTS) precipitation data confirmed the positive impact of the proposed bias correction and merging method. In particular, the Late product achieved accuracy comparable to or higher than that of IMERG Early and IMERG Late, despite its significantly shorter latency. However, its accuracy was still lower than that of IMERG Final, which benefits from additional gauge-based correction but is released with a delay of several months. Full article
(This article belongs to the Special Issue Precipitation Estimations Based on Satellite Observations)
Show Figures

Figure 1

18 pages, 4812 KB  
Article
A Novel Aerosol Optical Depth Retrieval Method Based on SDAE from Himawari-8/AHI Next-Generation Geostationary Satellite in Hubei Province
by Shiquan Deng, Ting Bai, Zhe Chen and Yepei Chen
Remote Sens. 2025, 17(8), 1396; https://doi.org/10.3390/rs17081396 - 14 Apr 2025
Cited by 1 | Viewed by 1178
Abstract
Atmospheric aerosols play an important role in the ecological environment, climate change, and human health. Aerosol optical depth (AOD) is the main measurement of aerosols. The next-generation geostationary satellite Himawari-8, loaded with the Advanced Himawari Imager (AHI), provides observation-based estimates of the hourly [...] Read more.
Atmospheric aerosols play an important role in the ecological environment, climate change, and human health. Aerosol optical depth (AOD) is the main measurement of aerosols. The next-generation geostationary satellite Himawari-8, loaded with the Advanced Himawari Imager (AHI), provides observation-based estimates of the hourly AOD. However, a highly accurate evaluation of AOD using AHI is still limited. In this paper, we establish a Stacked Denoising AutoEncoder (SDAE) model to retrieve highly accurate AOD using AHI. We explore the SDAE to retrieve AOD by taking the ground-observed AOD as the output and taking the AHI image, the month, hour, latitude, and longitude as the input data. This approach was tested in the Hubei province of China. Traditional machine learning methods such as Extreme Learning Machines (ELMs), BackPropagation Neural Networks (BPNNs), and Support Vector Machines (SVMs) are also used to evaluate model performance. The results show that the proposed method has the highest accuracy. We also compare the proposed method with ground-observed AOD measurements at the Wuhan University site, showing good consistency between the satellite-retrieved AOD and the ground-observed value. The study of the spatiotemporal change pattern of the hourly AOD in the Hubei province shows that the algorithm has good stability in the face of changes in the angle and intensity of sunlight. Full article
(This article belongs to the Special Issue Near Real-Time Remote Sensing Data and Its Geoscience Applications)
Show Figures

Figure 1

33 pages, 21153 KB  
Article
South China Sea SST Fronts, 2015–2022
by Igor M. Belkin and Yi-Tao Zang
Remote Sens. 2025, 17(5), 817; https://doi.org/10.3390/rs17050817 - 27 Feb 2025
Cited by 1 | Viewed by 3028
Abstract
High-resolution (2 km), high-frequency (hourly) SST data of the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 geostationary satellite were used to derive the monthly climatology of temperature fronts in the South China Sea. The SST data from 2015 to 2022 were [...] Read more.
High-resolution (2 km), high-frequency (hourly) SST data of the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 geostationary satellite were used to derive the monthly climatology of temperature fronts in the South China Sea. The SST data from 2015 to 2022 were processed with the Belkin–O’Reilly algorithm to generate maps of SST gradient magnitude GM. The GM maps were log-transformed to enhance contrasts in digital maps and reveal additional features (fronts). The combination of high-resolution, cloud-free, four-day-composite SST imagery from AHI, the advanced front-preserving gradient algorithm BOA, and digital contrast enhancement with the log-transformation of SST gradients allowed us to identify numerous mesoscale/submesoscale fronts (including a few fronts that have never been reported) and document their month-to-month variability and spatial patterns. The spatiotemporal variability of SST fronts was analyzed in detail in five regions: (1) In the Taiwan Strait, six fronts were identified: the China Coastal Front, Taiwan Bank Front, Changyun Ridge Front, East Penghu Channel Front, and Eastern/Western Penghu Islands fronts; (2) the Guangdong Shelf is dominated by the China Coastal Front in winter, with the eastern and western Guangdong fronts separated by the Pearl River outflow in summer; (3) Hainan Island is surrounded by upwelling fronts of various nature (wind-driven coastal and topographic) and tidal mixing fronts; in the western Beibu Gulf, the Red River Outflow Front extends southward as the Vietnam Coastal Front, while the northern Beibu Gulf features a tidal mixing front off the Guangxi coast; (4) Off SE Vietnam, the 11°N coastal upwelling gives rise to a summertime front, while the Mekong Outflow and associated front extend seasonally toward Cape Camau, close to the Gulf of Thailand Entrance Front; (5) In the Luzon Strait, the Kuroshio Front manifests as a chain of three fronts across the Babuyan Islands, while west of Luzon Island a broad offshore frontal zone persists in winter. The summertime eastward jet (SEJ) off SE Vietnam is documented from five-day mean SST data. The SEJ emerges in June–September off the 11°N coastal upwelling center and extends up to 114°E. The zonally oriented SEJ is observed to be located between two large gyres, each about 300 km in diameter. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

22 pages, 24659 KB  
Article
A Multi-Scale Fusion Deep Learning Approach for Wind Field Retrieval Based on Geostationary Satellite Imagery
by Wei Zhang, Yapeng Wu, Kunkun Fan, Xiaojiang Song, Renbo Pang and Boyu Guoan
Remote Sens. 2025, 17(4), 610; https://doi.org/10.3390/rs17040610 - 11 Feb 2025
Cited by 4 | Viewed by 3063
Abstract
Wind field retrieval, a crucial component of weather forecasting, has been significantly enhanced by recent advances in deep learning. However, existing approaches that are primarily focused on wind speed retrieval are limited by their inability to achieve real-time, full-coverage retrievals at large scales. [...] Read more.
Wind field retrieval, a crucial component of weather forecasting, has been significantly enhanced by recent advances in deep learning. However, existing approaches that are primarily focused on wind speed retrieval are limited by their inability to achieve real-time, full-coverage retrievals at large scales. To address this problem, we propose a novel multi-scale fusion retrieval (MFR) method, leveraging geostationary observation satellites. At the mesoscale, MFR incorporates a cloud-to-wind transformer model, which employs local self-attention mechanisms to extract detailed wind field features. At large scales, MFR incorporates a multi-encoder coordinate U-net model, which incorporates multiple encoders and utilises coordinate information to fuse meso- to large-scale features, enabling accurate and regionally complete wind field retrievals, while reducing the computational resources required. The MFR method was validated using Level 1 data from the Himawari-8 satellite, covering a geographic range of 0–60°N and 100–160°E, at a resolution of 0.25°. Wind field retrieval was accomplished within seconds using a single graphics processing unit. The mean absolute error of wind speed obtained by the MFR was 0.97 m/s, surpassing the accuracy of the CFOSAT and HY-2B Level 2B wind field products. The mean absolute error for wind direction achieved by the MFR was 23.31°, outperforming CFOSAT Level 2B products and aligning closely with HY-2B Level 2B products. The MFR represents a pioneering approach for generating initial fields for large-scale grid forecasting models. Full article
(This article belongs to the Special Issue Image Processing from Aerial and Satellite Imagery)
Show Figures

Figure 1

24 pages, 6198 KB  
Article
The China Coastal Front from Himawari-8 AHI SST Data—Part 2: South China Sea
by Igor M. Belkin, Shang-Shang Lou, Yi-Tao Zang and Wen-Bin Yin
Remote Sens. 2024, 16(18), 3415; https://doi.org/10.3390/rs16183415 - 14 Sep 2024
Cited by 2 | Viewed by 1582
Abstract
High-resolution (2 km) high-frequency (hourly) SST data from 2015 to 2021 provided by the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 geostationary satellite were used to study spatial and temporal variability of the China Coastal Front (CCF) in the South China Sea. [...] Read more.
High-resolution (2 km) high-frequency (hourly) SST data from 2015 to 2021 provided by the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 geostationary satellite were used to study spatial and temporal variability of the China Coastal Front (CCF) in the South China Sea. The SST data were processed with the Belkin and O’Reilly (2009) algorithm to generate monthly maps of the CCF’s intensity (defined as SST gradient magnitude GM) and frontal frequency (FF). The horizontal structure of the CCF was investigated from cross-frontal distributions of SST along 11 fixed lines that allowed us to determine inshore and offshore boundaries of the CCF and calculate the CCF’s strength (defined as total cross-frontal step of SST). Combined with the results of Part 1 of this study, where the CCF was documented in the East China Sea, the new results reported in this paper allowed the CCF to be traced from the Yangtze Bank to Hainan Island. The CCF is continuous in winter, when its intensity peaks at 0.15 °C/km (based on monthly data). In summer, when the Guangdong Coastal Current reverses and flows eastward, the CCF’s intensity is reduced to 0.05 °C/km or less, especially off western Guangdong, where the CCF vanishes almost completely. Owing to its breadth (50–100 km, up to 200 km in the Taiwan Strait), the CCF is a very strong front, especially in winter, when the total SST step across the CCF peaks at 9 °C in the Taiwan Strait. The CCF’s strength decreases westward to 6 °C off eastern Guangdong, 5 °C off western Guangdong, and 2 °C off Hainan Island, all in mid-winter. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

27 pages, 4362 KB  
Article
Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology
by Pallavi Govekar, Christopher Griffin, Owen Embury, Jonathan Mittaz, Helen Mary Beggs and Christopher J. Merchant
Remote Sens. 2024, 16(18), 3381; https://doi.org/10.3390/rs16183381 - 11 Sep 2024
Cited by 1 | Viewed by 2978
Abstract
As a contribution to the Integrated Marine Observing System (IMOS), the Bureau of Meteorology introduces new reprocessed Himawari-8 satellite-derived Sea Surface Temperature (SST) products. The Radiative Transfer Model and a Bayesian cloud clearing method is used to retrieve SSTs every 10 min from [...] Read more.
As a contribution to the Integrated Marine Observing System (IMOS), the Bureau of Meteorology introduces new reprocessed Himawari-8 satellite-derived Sea Surface Temperature (SST) products. The Radiative Transfer Model and a Bayesian cloud clearing method is used to retrieve SSTs every 10 min from the geostationary satellite Himawari-8. An empirical Sensor Specific Error Statistics (SSES) model, introduced herein, is applied to calculate bias and standard deviation for the retrieved SSTs. The SST retrieval and compositing method, along with validation results, are discussed. The monthly statistics for comparisons of Himawari-8 Level 2 Product (L2P) skin SST against in situ SST quality monitoring (iQuam) in situ SST datasets, adjusted for thermal stratification, showed a mean bias of −0.2/−0.1 K and a standard deviation of 0.4–0.7 K for daytime/night-time after bias correction, where satellite zenith angles were less than 60° and the quality level was greater than 2. For ease of use, these native resolution SST data have been composited using a method introduced herein that retains retrieved measurements, to hourly, 4-hourly and daily SST products, and projected onto the rectangular IMOS 0.02 degree grid. On average, 4-hourly products cover ≈10% more of the IMOS domain, while one-night composites cover ≈25% more of the IMOS domain than a typical 1 h composite. All available Himawari-8 data have been reprocessed for the September 2015–December 2022 period. The 10 min temporal resolution of the newly developed Himawari-8 SST data enables a daily composite with enhanced spatial coverage, effectively filling in SST gaps caused by transient clouds occlusion. Anticipated benefits of the new Himawari-8 products include enhanced data quality for applications like IMOS OceanCurrent and investigations into marine thermal stress, marine heatwaves, and ocean upwelling in near-coastal regions. Full article
Show Figures

Figure 1

23 pages, 24947 KB  
Article
Quality Assessment and Application Scenario Analysis of AGRI Land Aerosol Product from the Geostationary Satellite Fengyun-4B in China
by Nan Wang, Bingqian Li, Zhili Jin and Wei Wang
Sensors 2024, 24(16), 5309; https://doi.org/10.3390/s24165309 - 16 Aug 2024
Cited by 3 | Viewed by 1722
Abstract
The Advanced Geostationary Radiation Imager (AGRI) sensor on board the geostationary satellite Fengyun-4B (FY-4B) is capable of capturing particles in different phases in the atmospheric environment and acquiring aerosol observation data with high spatial and temporal resolution. To understand the quality of the [...] Read more.
The Advanced Geostationary Radiation Imager (AGRI) sensor on board the geostationary satellite Fengyun-4B (FY-4B) is capable of capturing particles in different phases in the atmospheric environment and acquiring aerosol observation data with high spatial and temporal resolution. To understand the quality of the Land Aerosol (LDA) product of AGRI and its application prospects, we conducted a comprehensive evaluation of the AGRI LDA AOD. Using the 550 nm AGRI LDA AOD (550 nm) of nearly 1 year (1 October 2022 to 30 September 2023) to compare with the Aerosol Robotic Network (AERONET), MODIS MAIAC, and Himawari-9/AHI AODs. Results show the erratic algorithmic performance of AGRI LDA AOD, the correlation coefficient (R), mean error (Bias), root mean square error (RMSE), and the percentage of data with errors falling within the expected error envelope of ±(0.05+0.15×AODAERONET) (within EE15) of the LDA AOD dataset are 0.55, 0.328, 0.533, and 34%, respectively. The LDA AOD appears to be overestimated easily in the southern and western regions of China and performs poorly in the offshore areas, with an R of 0.43, a Bias of 0.334, a larger RMSE of 0.597, and a global climate observing system fraction (GCOSF) percentage of 15% compared to the inland areas (R = 0.60, Bias = 0.163, RMSE = 0.509, GCOSF = 17%). Future improvements should focus on surface reflectance calculation, water vapor attenuation, and more suitable aerosol model selection to improve the algorithm’s accuracy. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

Back to TopTop