Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = geostationary microwave sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 10549 KB  
Review
Multi-Sensor Precipitation Estimation from Space: Data Sources, Methods and Validation
by Ruifang Guo, Xingwang Fan, Han Zhou and Yuanbo Liu
Remote Sens. 2024, 16(24), 4753; https://doi.org/10.3390/rs16244753 - 20 Dec 2024
Cited by 5 | Viewed by 3131
Abstract
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation [...] Read more.
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation data generation by integrating infrared and microwave observations. Among others, Global Precipitation Measurement (GPM) plays a crucial role in providing invaluable data sources for MPE by utilizing passive microwave sensors and geostationary infrared sensors. MPE represents the current state-of-the-art approach for generating high-quality, high-resolution global satellite precipitation products (SPPs), employing various methods such as cloud motion analysis, probability matching, adjustment ratios, regression techniques, neural networks, and weighted averaging. International collaborations, such as the International Precipitation Working Group and the Precipitation Virtual Constellation, have significantly contributed to enhancing our understanding of the uncertainties associated with MPEs and their corresponding SPPs. It has been observed that SPPs exhibit higher reliability over tropical oceans compared to mid- and high-latitudes, particularly during cold seasons or in regions with complex terrains. To further advance MPE research, future efforts should focus on improving accuracy for extremely low- and high-precipitation events, solid precipitation measurements, as well as orographic precipitation estimation. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Figure 1

23 pages, 4788 KB  
Article
A Rapid Beam Pointing Determination and Beam-Pointing Error Analysis Method for a Geostationary Orbiting Microwave Radiometer Antenna in Consideration of Antenna Thermal Distortions
by Hualong Hu, Xiaochong Tong and He Li
Sensors 2021, 21(17), 5943; https://doi.org/10.3390/s21175943 - 4 Sep 2021
Cited by 1 | Viewed by 2957
Abstract
When observing the Earth’s radiation signal with a geostationary orbiting (GEO) mechanically scanned microwave radiometer, it is necessary to correct the antenna beam pointing (ABP) in real time for the deviation caused by thermal distortions of antenna reflectors with the help of the [...] Read more.
When observing the Earth’s radiation signal with a geostationary orbiting (GEO) mechanically scanned microwave radiometer, it is necessary to correct the antenna beam pointing (ABP) in real time for the deviation caused by thermal distortions of antenna reflectors with the help of the on-board Image Navigation and Registration (INR) system during scanning of the Earth. The traditional ABP determination and beam-pointing error (BPE) analysis method is based on the electromechanical coupling principle, which usurps time and computing resources and thus cannot meet the requirement for frequent real-time on-board INR operations needed by the GEO microwave radiometer. For this reason, matrix optics (MO), which is widely used in characterizing the optical path of the visible/infrared sensor, is extended to this study so that it can be applied to model the equivalent optical path of the microwave antenna with a much more complicated configuration. Based on the extended MO method, the ideal ABP determination model and the model for determining the actual ABP affected by reflector thermal distortions are deduced for China’s future GEO radiometer, and an MO-based BPE computing method, which establishes a direct connection between the reflector thermal distortion errors (TDEs) and the thermally induced BPE, is defined. To verify the overall performance of the extended MO method for rapid ABP determination, the outputs from the ideal ABP determination model were compared to calculations from GRASP 10.3 software. The experimental results show that the MO-based ABP determination model can achieve the same results as GRASP software with a significant advantage in computational efficiency (e.g., at the lowest frequency band of 54 GHz, our MO-based model yielded a 4,730,000 times faster computation time than the GRASP software). After validating the correctness of the extended MO method, the impacts of the reflector TDEs on the BPE were quantified on a case-by-case basis with the help of the defined BPE computing method, and those TDEs that had a significant impact on the BPE were therefore identified. The methods and results presented in this study are expected to set the basis for the further development of on-board INR systems to be used in China’s future GEO microwave radiometer and benefit the ABP determination and BEP analysis of other antenna configurations to a certain extent. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 2359 KB  
Article
A New Data Fusion Neural Network Scheme for Rainfall Retrieval Using Passive Microwave and Visible/Infrared Satellite Data
by Massimiliano Sist, Giovanni Schiavon and Fabio Del Frate
Appl. Sci. 2021, 11(10), 4686; https://doi.org/10.3390/app11104686 - 20 May 2021
Cited by 5 | Viewed by 3187
Abstract
A new data fusion technique based on Artificial Neural Networks (ANN) for the design of a rainfall retrieval algorithm is presented. The use of both VIS/IR (VISible and InfraRed) data from GEO (Geostationary Earth Orbit) satellite and of passive microwave data from LEO [...] Read more.
A new data fusion technique based on Artificial Neural Networks (ANN) for the design of a rainfall retrieval algorithm is presented. The use of both VIS/IR (VISible and InfraRed) data from GEO (Geostationary Earth Orbit) satellite and of passive microwave data from LEO (Low Earth Orbit) satellite can take advantage of both types of sensors reducing their limitations. The technique can reconstruct the surface rain field with the MSG-SEVIRI (Meteosat Second Generation–Spinning Enhanced Visible Infrared Imager) spatial and temporal resolution, which means 3 km at the sub satellite point and 5 km at mid-latitudes, every 15 min, respectively. Rainfall estimations are also compared with H-SAF (Hydrology Satellite Application Facility) PR-OBS3A operational product showing better performance both on the identification of rainy areas and on the retrieval of the amount of precipitation. In particular, in the considered test cases, results report an improvement in average of 83% in terms of probability of rainy areas detection, of 45% in terms of false alarm rate, and of 47% in terms of root mean square error in the retrieval of the amount of precipitation. Full article
(This article belongs to the Special Issue Satellite Earth Observation for Atmospheric Modeling)
Show Figures

Figure 1

24 pages, 3313 KB  
Article
Multisensor Thermal Infrared and Microwave Land Surface Temperature Algorithm Intercomparison
by Mike Perry, Darren J. Ghent, Carlos Jiménez, Emma M. A. Dodd, Sofia L. Ermida, Isabel F. Trigo and Karen L. Veal
Remote Sens. 2020, 12(24), 4164; https://doi.org/10.3390/rs12244164 - 19 Dec 2020
Cited by 13 | Viewed by 4038
Abstract
To ensure optimal and consistent algorithm usage within climate studies utilizing satellite-derived Land Surface Temperature (LST) datasets, an algorithm intercomparison exercise was undertaken to assess the various operational and scientific LST retrieval algorithms in use. This study was focused on several LST products [...] Read more.
To ensure optimal and consistent algorithm usage within climate studies utilizing satellite-derived Land Surface Temperature (LST) datasets, an algorithm intercomparison exercise was undertaken to assess the various operational and scientific LST retrieval algorithms in use. This study was focused on several LST products including single-sensor products for AATSR, Terra-MODIS, SEVIRI, SSM/I and SSMIS; a Climate Date Record (CDR), which is a combined dataset drawing from AATSR, SLSTR and MODIS; and finally a merged low Earth orbit/geostationary product using data from AATSR, MODIS and SEVIRI. Therefore, the analysis included 14 algorithms: seven thermal infrared algorithms and seven microwave algorithms. The thermal infrared algorithms include five split-window coefficient-based algorithms, one optimal estimation algorithm and one single-channel inversion algorithm, with the microwave focusing on linear regression and neural network methods. The algorithm intercomparison assessed the performance of the retrieval algorithms for all sensors using a benchmark database. This approach was chosen due to the lack of sufficient in situ validation sites globally and the bias this limited set engendered on the training of particular algorithms. A simulated approach has the ability to test all parameters in a consistent, fair manner at a global scale. The benchmark database was constructed from European Centre for Medium-Range Weather Forecasts Re-analysis 5 (ERA5) atmospheric data, Combined ASTER and MODIS Emissivity for Land (CAMEL) infrared emissivity data, and Tool to Estimate Land Surface Emissivities at Microwave frequencies (TELSEM) emissivity data for the period of 2013–2015. The best-performing algorithms had biases of under 0.2 K and standard deviations of approximately 0.7 K. These results were consistent across multiple sensors. Areas of improvement, such as coefficient banding, were found for all algorithms as well as lines for further inquiry that could improve the global and regional performance. Full article
Show Figures

Figure 1

24 pages, 6435 KB  
Article
A New Retrieval Algorithm for Soil Moisture Index from Thermal Infrared Sensor On-Board Geostationary Satellites over Europe and Africa and Its Validation
by Nicolas Ghilain, Alirio Arboleda, Okke Batelaan, Jonas Ardö, Isabel Trigo, Jose-Miguel Barrios and Francoise Gellens-Meulenberghs
Remote Sens. 2019, 11(17), 1968; https://doi.org/10.3390/rs11171968 - 21 Aug 2019
Cited by 14 | Viewed by 5713
Abstract
Monitoring soil moisture at the Earth’surface is of great importance for drought early warnings. Spaceborne remote sensing is a keystone in monitoring at continental scale, as satellites can make observations of locations which are scarcely monitored by ground-based techniques. In recent years, several [...] Read more.
Monitoring soil moisture at the Earth’surface is of great importance for drought early warnings. Spaceborne remote sensing is a keystone in monitoring at continental scale, as satellites can make observations of locations which are scarcely monitored by ground-based techniques. In recent years, several soil moisture products for continental scale monitoring became available from the main space agencies around the world. Making use of sensors aboard polar satellites sampling in the microwave spectrum, soil moisture can be measured and mapped globally every few days at a spatial resolution as fine as 25 km. However, complementarity of satellite observations is a crucial issue to improve the quality of the estimations provided. In this context, measurements within the visible and infrared from geostationary satellites provide information on the surface from a totally different perspective. In this study, we design a new retrieval algorithm for daily soil moisture monitoring based only on the land surface temperature observations derived from the METEOSAT second generation geostationary satellites. Soil moisture has been retrieved from the retrieval algorithm for an eight years period over Europe and Africa at the SEVIRI sensor spatial resolution (3 km at the sub-satellite point). The results, only available for clear sky and partly cloudy conditions, are for the first time extensively evaluated against in-situ observations provided by the International Soil Moisture Network and FLUXNET at sites across Europe and Africa. The soil moisture retrievals have approximately the same accuracy as the soil moisture products derived from microwave sensors, with the most accurate estimations for semi-arid regions of Europe and Africa, and a progressive degradation of the accuracy towards northern latitudes of Europe. Although some possible improvements can be expected by a better use of other products derived from SEVIRI, the new approach developped and assessed here is a valuable alternative to microwave sensors to monitor daily soil moisture at the resolution of few kilometers over entire continents and could reveal a good complementarity to an improved monitoring system, as the algorithm can produce surface soil moisture with less than 1 day delay over clear sky and non-steady cloudy conditions (over 10% of the time). Full article
(This article belongs to the Special Issue Remote Sensing of Regional Soil Moisture)
Show Figures

Figure 1

20 pages, 3343 KB  
Article
Land Surface Temperature Derivation under All Sky Conditions through Integrating AMSR-E/AMSR-2 and MODIS/GOES Observations
by Donglian Sun, Yu Li, Xiwu Zhan, Paul Houser, Chaowei Yang, Long Chiu and Ruixin Yang
Remote Sens. 2019, 11(14), 1704; https://doi.org/10.3390/rs11141704 - 18 Jul 2019
Cited by 36 | Viewed by 5856
Abstract
Land surface temperature (LST) is an important input to the Atmosphere–Land Exchange Inverse (ALEXI) model to derive the Evaporative Stress Index (ESI) for drought monitoring. Currently, LST inputs to the ALEXI model come from the Geostationary Operational Environmental Satellite (GOES) and Moderate Resolution [...] Read more.
Land surface temperature (LST) is an important input to the Atmosphere–Land Exchange Inverse (ALEXI) model to derive the Evaporative Stress Index (ESI) for drought monitoring. Currently, LST inputs to the ALEXI model come from the Geostationary Operational Environmental Satellite (GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) products, but clouds affect them. While passive microwave (e.g., AMSR-E and AMSR-2) sensors can penetrate non-rainy clouds and observe the Earth’s surface, but usually with a coarse spatial resolution, how to utilize multiple instruments’ advantages is an important methodology in remote sensing. In this study, we developed a new five-channel algorithm to derive LST from the microwave AMSR-E and AMSR-2 measurements and calibrate to the MODIS and GOES LST products. A machine learning method is implemented to further improve its performance. The MODIS and GOES LST products still show better performance than the AMSR-E and AMSR-2 LSTs when evaluated against the ground observations. Therefore, microwave LSTs are only used to fill the gaps due to clouds in the MODIS and GOES LST products. A gap filling method is further applied to fill the remaining gaps in the merged LSTs and downscale to the same spatial resolution as the MODIS and GOES products. With the daily integrated LST at the same spatial resolution as the MODIS and GOES products and available under nearly all sky conditions, the drought index, like the ESI, can be updated on daily basis. The initial implementation results demonstrate that the daily drought map can catch the fast changes of drought conditions and capture the signals of flash drought, and make flash drought monitoring become possible. It is expected that a drought map that is available on daily basis will benefit future drought monitoring. Full article
(This article belongs to the Special Issue Hydrometeorological Prediction and Mapping)
Show Figures

Graphical abstract

13 pages, 5421 KB  
Article
Decorrelation of Satellite Precipitation Estimates in Space and Time
by Francisco J. Tapiador, Cecilia Marcos, Andres Navarro, Alfonso Jiménez-Alcázar, Raul Moreno Galdón and Julia Sanz
Remote Sens. 2018, 10(5), 752; https://doi.org/10.3390/rs10050752 - 14 May 2018
Cited by 4 | Viewed by 4588
Abstract
Precise estimates of precipitation are required for many environmental tasks, including water resources management, improvement of numerical model outputs, nowcasting and evaluation of anthropogenic impacts on global climate. Nonetheless, the availability of such estimates is hindered by technical limitations. Rain gauge and ground [...] Read more.
Precise estimates of precipitation are required for many environmental tasks, including water resources management, improvement of numerical model outputs, nowcasting and evaluation of anthropogenic impacts on global climate. Nonetheless, the availability of such estimates is hindered by technical limitations. Rain gauge and ground radar measurements are limited to land, and the retrieval of quantitative precipitation estimates from satellite has several problems including the indirectness of infrared-based geostationary estimates, and the low orbit of those microwave instruments capable of providing a more precise measurement but suffering from poor temporal sampling. To overcome such problems, data fusion methods have been devised to take advantage of synergisms between available data, but these methods also present issues and limitations. Future improvements in satellite technology are likely to follow two strategies. One is to develop geostationary millimeter-submillimeter wave soundings, and the other is to deploy a constellation of improved polar microwave sensors. Here, we compare both strategies using a simulated precipitation field. Our results show that spatial correlation and RMSE would be little affected at the monthly scale in the constellation, but that the precise location of the maximum of precipitation could be compromised; depending on the application, this may be an issue. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation)
Show Figures

Graphical abstract

25 pages, 9433 KB  
Article
A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain
by Stefano Corradini, Mario Montopoli, Lorenzo Guerrieri, Matteo Ricci, Simona Scollo, Luca Merucci, Frank S. Marzano, Sergio Pugnaghi, Michele Prestifilippo, Lucy J. Ventress, Roy G. Grainger, Elisa Carboni, Gianfranco Vulpiani and Mauro Coltelli
Remote Sens. 2016, 8(1), 58; https://doi.org/10.3390/rs8010058 - 12 Jan 2016
Cited by 74 | Viewed by 10121
Abstract
Volcanic activity is observed worldwide with a variety of ground and space-based remote sensing instruments, each with advantages and drawbacks. No single system can give a comprehensive description of eruptive activity, and so, a multi-sensor approach is required. This work integrates infrared and [...] Read more.
Volcanic activity is observed worldwide with a variety of ground and space-based remote sensing instruments, each with advantages and drawbacks. No single system can give a comprehensive description of eruptive activity, and so, a multi-sensor approach is required. This work integrates infrared and microwave volcanic ash retrievals obtained from the geostationary Meteosat Second Generation (MSG)-Spinning Enhanced Visible and Infrared Imager (SEVIRI), the polar-orbiting Aqua-MODIS and ground-based weather radar. The expected outcomes are improvements in satellite volcanic ash cloud retrieval (altitude, mass, aerosol optical depth and effective radius), the generation of new satellite products (ash concentration and particle number density in the thermal infrared) and better characterization of volcanic eruptions (plume altitude, total ash mass erupted and particle number density from thermal infrared to microwave). This approach is the core of the multi-platform volcanic ash cloud estimation procedure being developed within the European FP7-APhoRISM project. The Mt. Etna (Sicily, Italy) volcano lava fountaining event of 23 November 2013 was considered as a test case. The results of the integration show the presence of two volcanic cloud layers at different altitudes. The improvement of the volcanic ash cloud altitude leads to a mean difference between the SEVIRI ash mass estimations, before and after the integration, of about the 30%. Moreover, the percentage of the airborne “fine” ash retrieved from the satellite is estimated to be about 1%–2% of the total ash emitted during the eruption. Finally, all of the estimated parameters (volcanic ash cloud altitude, thickness and total mass) were also validated with ground-based visible camera measurements, HYSPLIT forward trajectories, Infrared Atmospheric Sounding Interferometer (IASI) satellite data and tephra deposits. Full article
(This article belongs to the Special Issue Volcano Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop