Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = gelatinized starch urea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1962 KiB  
Article
Effect of Different Slow-Release Urea on the Production Performance, Rumen Fermentation, and Blood Parameter of Angus Heifer
by Caiyun Fan, Hongguang Li, Shuaihong Li, Gang Zhong, Wenbin Jia, Zhao Zhuo, Yanfeng Xue, Anne F. Koontz and Jianbo Cheng
Animals 2024, 14(16), 2296; https://doi.org/10.3390/ani14162296 - 7 Aug 2024
Cited by 3 | Viewed by 1906
Abstract
This study investigated the effect of replacing part of the dietary soybean meal with either polymer-coated urea or gelatinized starch urea on the production performance, blood indexes, and ruminal fermentation of Angus heifers. A total of 210 purebred Angus cattle (BW = 314.26 [...] Read more.
This study investigated the effect of replacing part of the dietary soybean meal with either polymer-coated urea or gelatinized starch urea on the production performance, blood indexes, and ruminal fermentation of Angus heifers. A total of 210 purebred Angus cattle (BW = 314.26 kg) were divided into three groups: the no urea group (CON), the polymer-coated urea group (PCU), and the gelatinized starch urea group (GSU); 20 g/kg polymer-coated urea or 25 g/kg gelatinized starch urea was used to replace part of soybean meal in the concentrate feed, according to the principle of isometabolic energy and isonitrogenous. The result showed that the PCU group had higher ADG and ADF apparent digestibility, while it had a lower feed–weight ratio. On the 86th day, the serum albumin (ALB) content in the PCU group was significantly higher than that in the CON group. In rumen, compared with the CON group, the contents of acetic acid and total volatile fatty acid were significantly higher in the PCU group, whereas butyric acid and propionic acid were significantly higher in the PCU group and GSU group. Ruminal bacterial diversity analysis found that the abundance of Firmicutes was higher in the PCU group at the phylum level, and an inverse result was observed in Bacteroidetes. The abundance of Paraprevotella was higher in the PCU group, whereas higher abundance of Prevotella was found in the GSU group at the genus level. These results indicate that slow-release urea can replace part of soybean meal in the diet, and the amount of substitution in this trial had no diverse effect on the performance of Angus heifers. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

11 pages, 719 KiB  
Article
Genome-Based Classification of Pedobacter albus sp. nov. and Pedobacter flavus sp. nov. Isolated from Soil
by Nhan Le Thi Tuyet and Jaisoo Kim
Diversity 2024, 16(5), 292; https://doi.org/10.3390/d16050292 - 11 May 2024
Cited by 1 | Viewed by 1550
Abstract
Two rod-shaped, non-spore-forming, Gram-negative bacteria, strain KR3-3T isolated from fresh soil in Korea and strain VNH31T obtained from soil samples from motorbike repair workshop floors in Vietnam, were identified. Phylogenetic analysis utilizing 16S rRNA gene sequences revealed their affiliation with the [...] Read more.
Two rod-shaped, non-spore-forming, Gram-negative bacteria, strain KR3-3T isolated from fresh soil in Korea and strain VNH31T obtained from soil samples from motorbike repair workshop floors in Vietnam, were identified. Phylogenetic analysis utilizing 16S rRNA gene sequences revealed their affiliation with the family Sphingobacteriaceae and their relation to the genus Pedobacter, exhibiting 16S rRNA gene sequence similarities lower than 98.00% with all known species within the genus Pedobacter. Growth of VNH31T and KR3-3T was impeded by NaCl concentrations exceeding >0.5% and 1.5%, respectively, while they both thrived optimally at temperatures ranging between 25 and 30 °C. Notably, neither strain reduced nitrate to nitrite nor produced indole. Negative results were observed for the acidification of D-glucose and hydrolysis of urea, gelatin, casein, and starch. VNH31T exhibited growth on β-galactosidase, sodium acetate, L-serine, and L-proline, whereas KR 3-3T demonstrated growth on D-glucose, D-mannose, D-maltose, N-acetyl-glucosamine, sucrose, sodium acetate, L-serine, 4-Hydroxybenzoic acid, and L-proline. Core genome-based phylogenetic analysis revealed that the two isolates formed distinct clusters within the genus Pedobacter. The DNA G+C contents of KR3-3T and VNH31T were determined to be 44.12 mol% and 32.96 mol%, respectively. The average nucleotide identity and in silico DNA-DNA hybridization relatedness values (67.19–74.19% and 17.6–23.6%, respectively) between the Pedobacter isolates and the closely related type strains fell below the threshold values utilized for species delineation. Following comprehensive genomic, chemotaxonomic, phenotypic, and phylogenetic analyses, the isolated strains are proposed as two novel species within the genus Pedobacter, named Pedobacter albus sp. nov. (type strain KR3-3T = KACC 23486T = NBRC 116682T) and Pedobacter flavus sp. nov. (type strain VNH31T = KACC 23297T = CCTCC AB 2023109T). Full article
(This article belongs to the Special Issue Microbial Diversity and Culture Collections Hotspots in 2024)
Show Figures

Figure 1

15 pages, 3120 KiB  
Article
Nitrogenous Fertilizer Levels Affect the Physicochemical Properties of Sorghum Starch
by Yani Huang, Lixin Tian, Qinghua Yang, Miaomiao Zhang, Guiyang Liu, Shaopeng Yu and Baili Feng
Foods 2022, 11(22), 3690; https://doi.org/10.3390/foods11223690 - 17 Nov 2022
Cited by 8 | Viewed by 2376
Abstract
Nitrogen is a key factor affecting sorghum growth and grain quality. This experiment was designed to investigate the physicochemical properties of sorghum starch in four sorghum varieties (Liaoza 10, Liaoza 19, Jinza 31, and Jinza 34) under four nitrogen levels: 0 kg/ha urea [...] Read more.
Nitrogen is a key factor affecting sorghum growth and grain quality. This experiment was designed to investigate the physicochemical properties of sorghum starch in four sorghum varieties (Liaoza 10, Liaoza 19, Jinza 31, and Jinza 34) under four nitrogen levels: 0 kg/ha urea (N1), 300 kg/ha urea as base fertilizer (N2), 300 kg/ha urea as topdressing at the jointing stage (N3), and 450 kg/ha urea as topdressing at the jointing stage (N4). The results showed that grain size and amylose content increased with increasing nitrogen fertilizer level, peaking at N3. The peak viscosity, final viscosity, gelatinization temperature, initial temperature, final temperature, and enthalpy value increased with the nitrogenous fertilizer level, peaking at N3. The application of nitrogen fertilizer at the jointing period significantly increased the above indicators. However, excess nitrogen at the jointing period (N4) can significantly reduce the above indicators, thus changing the physicochemical properties and structure of sorghum starch. Overall, nitrogen significantly affects the structure and physicochemical properties of sorghum starch. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

10 pages, 1403 KiB  
Article
Lightweight Insulation Boards Based on Lignocellulosic Particles Glued with Agents of Natural Origin
by Radosław Mirski, Dorota Dziurka, Marcin Kuliński and Adam Derkowski
Materials 2021, 14(12), 3219; https://doi.org/10.3390/ma14123219 - 10 Jun 2021
Cited by 10 | Viewed by 2790
Abstract
In this study, the possibility of using adhesives of natural origin for the manufacture of wood fiber-based lightweight panels was investigated. The boards, of a density ranging from 150 to 250 kg/m3, were glued together using commercial urea–formaldehyde resin (control board), [...] Read more.
In this study, the possibility of using adhesives of natural origin for the manufacture of wood fiber-based lightweight panels was investigated. The boards, of a density ranging from 150 to 250 kg/m3, were glued together using commercial urea–formaldehyde resin (control board), solutions of rye flour and potato starch and two types of starch: oxidized and gelatinized. The density and density profile, compressive strength, modulus of elasticity, acoustic properties and thermal conductivity were determined in the produced boards. These studies show that when food components are used as binding agents in the manufacture of lightweight wood fiberboards, the properties obtained can be comparable with those of commercial boards manufactured using synthetic agents. Full article
(This article belongs to the Special Issue Biobased Adhesives for Composite Materials)
Show Figures

Figure 1

19 pages, 2093 KiB  
Article
Biodegradable Polymer Coated Granular Urea Slows Down N Release Kinetics and Improves Spinach Productivity
by Bilal Beig, Muhammad Bilal Khan Niazi, Zaib Jahan, Salik Javed Kakar, Ghulam Abbas Shah, Muhammad Shahid, Munir Zia, Midrar Ul Haq and Muhammad Imtiaz Rashid
Polymers 2020, 12(11), 2623; https://doi.org/10.3390/polym12112623 - 7 Nov 2020
Cited by 50 | Viewed by 7280
Abstract
Low nitrogen (N) utilization efficiency due to environmental N losses from fertilizers results in high-cost on-farm production. Urea coating with biodegradable polymers can prevent these losses by controlling the N release of fertilizers. We calculated N release kinetics of coated granular with various [...] Read more.
Low nitrogen (N) utilization efficiency due to environmental N losses from fertilizers results in high-cost on-farm production. Urea coating with biodegradable polymers can prevent these losses by controlling the N release of fertilizers. We calculated N release kinetics of coated granular with various biodegradable polymeric materials and its impact on spinach yield and N uptake. Different formulations were used, (i) G-1: 10% starch + 5% polyvinyl alcohol (PVA) + 5% molasses; (ii) G-2: 10% starch + 5% PVA + 5% paraffin wax (PW); (iii) G-3: 5% gelatin + 10% gum arabic + 5% PW; (iv) G-4: 5% molasses + 5% gelatin + 10% gum arabic, to coat urea using a fluidized bed coater. The morphological and X-ray diffraction (XRD) analyses indicated that a uniform coating layer with no new phase formation occurred. In the G-2 treatment, maximum crushing strength (72.9 N) was achieved with a slowed-down N release rate and increased efficiency of 31%. This resulted in increased spinach dry foliage yield (47%), N uptake (60%) and apparent N recovery (ANR: 130%) from G-2 compared to uncoated urea (G-0). Therefore, coating granular urea with biodegradable polymers is a good choice to slower down the N release rate and enhances the crop yield and N utilization efficiency from urea. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

16 pages, 3166 KiB  
Article
Slow-Release Urea Prills Developed Using Organic and Inorganic Blends in Fluidized Bed Coater and Their Effect on Spinach Productivity
by Bilal Beig, Muhammad Bilal Khan Niazi, Zaib Jahan, Erum Pervaiz, Ghulam Abbas Shah, Midrar Ul Haq, Mazhar Iqbal Zafar and Munir Zia
Sustainability 2020, 12(15), 5944; https://doi.org/10.3390/su12155944 - 23 Jul 2020
Cited by 44 | Viewed by 7065
Abstract
The application of urea-based fertilizers in developing countries has gained significant momentum over time. urea usage is to meet demand and supply gap of food resources as world population is increasing at a fast pace. urea contains largest content of nitrogen (46%) among [...] Read more.
The application of urea-based fertilizers in developing countries has gained significant momentum over time. urea usage is to meet demand and supply gap of food resources as world population is increasing at a fast pace. urea contains largest content of nitrogen (46%) among all the solid nitrogenous fertilizers. However, main drawback of urea is its higher dissolution rate. After soil application, most of urea nitrogen is lost through a leaching, runoff, nitrification-denitrification and ammonia volatilization. To tackle urea related environmental pollution, development of slow-release urea fertilizer is a need of the hour and this would also increase product use efficiency in terms of crop productivity and its N uptake. We studied the usage of polymeric materials in combination with inorganic substances like sulfur and plaster of Paris as effective and biodegradable coating substances for urea prills. For coating on urea prills, fluidized bed coater was used whereas paraffin wax and molasses were used as binding agents. The urea was coated with four different formulations, i.e., C-1: PVA 5% + plaster of Paris 10% + sulfur 5% + paraffin wax 2%, C-2: PVA 5% + starch 10% + sulfur 5% + paraffin wax 2%, C-3: gelatin 5% + plaster of Paris 10% + sulfur 5% + paraffin wax 2% and C-4: PVA 5% + starch 10% + sulfur 5% + paraffin wax 2.5% + molasses 2.5%. Each formulation along with uncoated urea prills (C-0) were evaluated for characterization and N release kinetics. All the formulations along with uncoated urea were applied to spinach crop in pot experiment. A control (No N: untreated) was also kept. Spinach biomass yield and N uptake were determined. The formulation C-1 yielded highest urea-N release efficiency and spinach N uptake of6.87% and 1.93 g N/pot, respectively. Themodified Schwarz and Sinclair formula gave the excellent representation of release of nutrient-N from coated urea prills. It is concluded that coating urea prills with organic and inorganic blends is better option to slow down N release kinetics and improve spinach productivity. Therefore, by using coated fertilizers, farmers can improve agro-environmental value of urea, worldwide. Full article
(This article belongs to the Special Issue Sustainable Conversion of Renewable Energy Sources)
Show Figures

Graphical abstract

Back to TopTop