Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = gas emission craters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4727 KiB  
Technical Note
Exploitation of OCO-3 Satellite Data to Analyse Carbon Dioxide Emissions from the Mt. Etna Volcano
by Vito Romaniello and Gaetana Ganci
Remote Sens. 2025, 17(11), 1918; https://doi.org/10.3390/rs17111918 - 31 May 2025
Viewed by 773
Abstract
The Orbiting Carbon Observatory-3 (OCO-3) mission provides a new perspective for studying atmospheric carbon dioxide (CO2). Here we assess the potentiality of OCO-3 satellite acquisitions to analyse and monitor the CO2 emissions from Mt. Etna volcano. While OCO-3 data are [...] Read more.
The Orbiting Carbon Observatory-3 (OCO-3) mission provides a new perspective for studying atmospheric carbon dioxide (CO2). Here we assess the potentiality of OCO-3 satellite acquisitions to analyse and monitor the CO2 emissions from Mt. Etna volcano. While OCO-3 data are well-suited for gas analysis on a regional spatial scale, they have not yet been widely utilised for studying volcanic carbon dioxide emissions. The Snapshot Area Map (SAM) acquisition mode enables the capture of targeted snapshots over volcanic regions, allowing for the measurement of CO2 concentrations in the vicinity of volcanic structures. In this work, we analyse 62 OCO-3 images acquired between 2020 and 2023, focusing on measurements within a 20 km radius of Mt. Etna’s summit, where the main craters are located. Atmospheric CO2 concentrations are examined as a function of distance from the summit, and assuming a linear decreasing trend, the angular coefficient is computed. Lower angular coefficient values may indicate a stronger volcanic CO2 contribution. Considering both the number of sampled pixels in each OCO-3 snapshot and the associated uncertainties in the angular coefficient calculation, we identify five days with potentially significant CO2 emissions from Mt. Etna, likely associated with specific volcanic activity phases. The eruptive activity on these five days is further investigated, revealing a possible correlation between elevated gas emissions and intense volcanic phenomena, such as lava fountains. This assessment is supported by thermal activity analyses using SEVIRI, MODIS, and VIIRS satellite data. Full article
Show Figures

Figure 1

20 pages, 12655 KiB  
Article
Modeling of Explosive Pingo-like Structures and Fluid-Dynamic Processes in the Arctic Permafrost: Workflow Based on Integrated Geophysical, Geocryological, and Analytical Data
by Igor Buddo, Natalya Misyurkeeva, Ivan Shelokhov, Alexandr Shein, Vladimir Sankov, Artem Rybchenko, Anna Dobrynina, Alexey Nezhdanov, Anna Parfeevets, Marina Lebedeva, Alena Kadetova, Alexander Smirnov, Oxana Gutareva, Alexey Chernikh, Lyubov Shashkeeva and Gleb Kraev
Remote Sens. 2024, 16(16), 2948; https://doi.org/10.3390/rs16162948 - 12 Aug 2024
Cited by 4 | Viewed by 1865
Abstract
Understanding the mechanisms responsible for the origin, evolution, and failure of pingos with explosive gas emissions and the formation of craters in the Arctic permafrost requires comprehensive studies in the context of fluid dynamic processes. Properly choosing modeling methods for the joint interpretation [...] Read more.
Understanding the mechanisms responsible for the origin, evolution, and failure of pingos with explosive gas emissions and the formation of craters in the Arctic permafrost requires comprehensive studies in the context of fluid dynamic processes. Properly choosing modeling methods for the joint interpretation of geophysical results and analytical data on core samples from suitable sites are prerequisites for predicting pending pingo failure hazards. We suggest an optimal theoretically grounded workflow for such studies, in a site where pingo collapse induced gas blowout and crater formation in the Yamal Peninsula. The site was chosen with reference to the classification of periglacial landforms and their relation to the local deformation pattern, according to deciphered satellite images and reconnaissance geophysical surveys. The deciphered satellite images and combined geophysical data from the site reveal a pattern of periglacial landforms matching the structural framework with uplifted stable permafrost blocks (polygons) bounded by eroded fractured zones (lineaments). Greater percentages of landforms associated with permafrost degradation fall within the lineaments. Resistivity anomalies beneath pingo-like mounds presumably trace deeply rooted fluid conduits. This distribution can be explained in terms of fluid dynamics. N–E and W–E faults, and especially their junctions with N–W structures, are potentially the most widely open conduits for gas and water which migrate into shallow sediments in the modern stress field of N–S (or rather NEN) extension and cause a warming effect on permafrost. The results obtained with a new workflow and joint interpretation of remote sensing, geophysical, and analytical data from the site of explosive gas emission in the Yamal Peninsula confirm the advantages of the suggested approach and its applicability for future integrated fluid dynamics research. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring for Arctic Region)
Show Figures

Figure 1

18 pages, 2907 KiB  
Article
Tracing Magma Migration at Mt. Etna Volcano during 2006–2020, Coupling Remote Sensing of Crater Gas Emissions and Ground Measurement of Soil Gases
by Salvatore Giammanco, Giuseppe Salerno, Alessandro La Spina, Pietro Bonfanti, Tommaso Caltabiano, Salvatore Roberto Maugeri, Filippo Murè and Paolo Principato
Remote Sens. 2024, 16(7), 1122; https://doi.org/10.3390/rs16071122 - 22 Mar 2024
Viewed by 1426
Abstract
The geochemical monitoring of volcanic activity today relies largely on remote sensing, but the combination of this approach together with soil gas monitoring, using the appropriate parameters, is still not widely used. The main purpose of this study was to correlate data from [...] Read more.
The geochemical monitoring of volcanic activity today relies largely on remote sensing, but the combination of this approach together with soil gas monitoring, using the appropriate parameters, is still not widely used. The main purpose of this study was to correlate data from crater gas emissions with flank emissions of soil gases at Mt. Etna volcano from June 2006 to December 2020. Crater SO2 fluxes were measured from fixed stations around the volcano using the DOAS technique and applying a modeled clear-sky spectrum. The SO2/HCl ratio in the crater plume was measured with the OP-FTIR technique from a transportable instrument, using the sun as an IR source. Soil CO2 efflux coupled with the 220Rn/222Rn activity ratio in soil gases (named SGDI) were measured at a fixed monitoring site on the east flank of Etna. All signals acquired were subject both to spectral analysis and to filtering of the periodic signals discovered. All filtered signals revealed changes that were nicely correlated both with other geophysical signals and with volcanic eruptions during the study period. Time lags between parameters were explained in terms of different modes of magma migration and storage inside the volcano before eruptions. A comprehensive dynamic degassing model is presented that allows for a better understanding of magma dynamics in an open-conduit volcano. Full article
Show Figures

Figure 1

22 pages, 49519 KiB  
Article
Modelling Paroxysmal and Mild-Strombolian Eruptive Plumes at Stromboli and Mt. Etna on 28 August 2019
by Giuseppe Castorina, Agostino Semprebello, Alessandro Gattuso, Giuseppe Salerno, Pasquale Sellitto, Francesco Italiano and Umberto Rizza
Remote Sens. 2023, 15(24), 5727; https://doi.org/10.3390/rs15245727 - 14 Dec 2023
Cited by 1 | Viewed by 1538
Abstract
Volcanic eruptions pose a major natural hazard influencing the environment, climate and human beings at different temporal and spatial scales. Nevertheless, several volcanoes worldwide are poorly monitored and assessing the impact of their eruptions remains, in some cases, challenging. Nowadays, different numerical dispersion [...] Read more.
Volcanic eruptions pose a major natural hazard influencing the environment, climate and human beings at different temporal and spatial scales. Nevertheless, several volcanoes worldwide are poorly monitored and assessing the impact of their eruptions remains, in some cases, challenging. Nowadays, different numerical dispersion models are largely employed in order to evaluate the potential effects of volcanic plume dispersion due to the transport of ash and gases. On 28 August 2019, both Mt. Etna and Stromboli had eruptive activity; Mt. Etna was characterised by mild-Strombolian activity at summit craters, while at Stromboli volcano, a paroxysmal event occurred, which interrupted the ordinary typical-steady Strombolian activity. Here, we explore the spatial dispersion of volcanic sulphur dioxide (SO2) gas plumes in the atmosphere, at both volcanoes, using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) considering the ground-measured SO2 amounts and the plume-height as time-variable eruptive source parameters. The performance of WRF-Chem was assessed by cross-correlating the simulated SO2 dispersion maps with data retrieved by TROPOMI and OMI sensors. The results show a feasible agreement between the modelled dispersion maps and TROPOMI satellite for both volcanoes, with spatial pattern retrievals and a total mass of dispersed SO2 of the same order of magnitude. Predicted total SO2 mass for Stromboli might be underestimated due to the inhibition from ground to resolve the sin-eruptive SO2 emission due to the extreme ash-rich volcanic plume released during the paroxysm. This study demonstrates the feasibility of a WRF-Chem model with time-variable ESPs in simultaneously reproducing two eruptive plumes with different SO2 emission and their dispersion into the atmosphere. The operational implementation of this method could represent effective support for the assessment of local-to-regional air quality and flight security and, in case of particularly intense events, also on a global scale. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

10 pages, 2339 KiB  
Communication
Thermal Conductivity of Frozen and Unfrozen Gas-Saturated Soils
by Evgeny Chuvilin, Dinara Davletshina, Boris Bukhanov and Sergey Grebenkin
Geosciences 2023, 13(11), 347; https://doi.org/10.3390/geosciences13110347 - 13 Nov 2023
Cited by 1 | Viewed by 2019
Abstract
Arctic permafrost often contains gas-saturated horizons. The gas component in freezing and frozen soils can exist under different pressures, which are expected to affect their properties and behavior. The effect of pore gas pressure on the thermal conductivity of frozen and unfrozen silt [...] Read more.
Arctic permafrost often contains gas-saturated horizons. The gas component in freezing and frozen soils can exist under different pressures, which are expected to affect their properties and behavior. The effect of pore gas pressure on the thermal conductivity of frozen and unfrozen silt loam saturated with methane or carbon dioxide at pressures below the hydrate formation conditions is observed in the current study. The variable gas pressure and temperature conditions are simulated in a specially designed pressure cell, which allows thermal conductivity measuring in pressurized samples at positive and negative temperatures. The experiments using natural samples collected near the gas emission crater (Yamal Peninsula) show that thermal conductivity is sensitive to pore gas pressure even at high moisture contents. The thermal conductivity of methane-saturated soil becomes 4% and 6% higher in frozen and unfrozen samples, respectively, as the gas pressure increases from 0.1 MPa to 2 MPa. In the case of CO2 saturation, the respective thermal conductivity increase in frozen and unfrozen samples reaches 25% and 15% upon pressure change from 0.1 to 0.9 MPa. The results stimulate further special studies of the effects of gas type and pressure on the thermal properties of closed gas-saturated taliks, of which the pore pressure is increasing during freezing up. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

13 pages, 5033 KiB  
Technical Note
MultiGAS Detection from Airborne Platforms on Italian Volcanic and Geothermal Areas
by Malvina Silvestri, Jorge Andres Diaz, Federico Rabuffi, Vito Romaniello, Massimo Musacchio, Ernesto Corrales, James Fox, Enrica Marotta, Pasquale Belviso, Rosario Avino, Gala Avvisati and Maria Fabrizia Buongiorno
Remote Sens. 2023, 15(9), 2390; https://doi.org/10.3390/rs15092390 - 3 May 2023
Cited by 4 | Viewed by 2119
Abstract
The measurement of volcanic gases, such as CO2 and SO2, emitted from summit craters and fumaroles is crucial to monitor volcanic activity, providing estimations of gases fluxes, and geochemical information that helps to assess the status and the risk level [...] Read more.
The measurement of volcanic gases, such as CO2 and SO2, emitted from summit craters and fumaroles is crucial to monitor volcanic activity, providing estimations of gases fluxes, and geochemical information that helps to assess the status and the risk level of an active volcano. During high degassing events, the measurement of volcanic emissions is a dangerous task that cannot be performed using hand portable or backpack carried gas analysis systems. Measurements of gases plumes could be safety achieved by using instruments mounted on UAS (Unmanned Aerial System). In this work, we present the measurements of CO2, SO2, and H2S gases collected with a miniaturized MultiGAS instrument during 2021 and 2022 field campaigns. They took place at several thermally active areas in Italy: Pisciarelli (Naples, Italy), Stromboli volcano (Messina, Italy), and Parco Naturalistico delle Biancane (Grosseto, Italy). Full article
(This article belongs to the Special Issue Remote Sensing of Geothermal and Volcanic Environments)
Show Figures

Figure 1

20 pages, 2737 KiB  
Article
Explosive Processes in Permafrost as a Result of the Development of Local Gas-Saturated Fluid-Dynamic Geosystems
by Alexander Khimenkov and Julia Stanilovskaya
Gases 2022, 2(4), 146-165; https://doi.org/10.3390/gases2040009 - 7 Dec 2022
Cited by 3 | Viewed by 2311
Abstract
The relevance of studying explosive processes in permafrost lies in the prospect of gas production from small gas-saturated zones in the subsurface; the influx of significant amounts of greenhouse gases from frozen soils creates a threat to infrastructure. The purpose of this article [...] Read more.
The relevance of studying explosive processes in permafrost lies in the prospect of gas production from small gas-saturated zones in the subsurface; the influx of significant amounts of greenhouse gases from frozen soils creates a threat to infrastructure. The purpose of this article is to reveal the general patterns of frozen soils’ transformation in local zones of natural explosions. The greatest volume of information about the processes preceding the formation of gas-emission craters can be obtained by studying the deformations of the cryogenic structure of soil. The typification of the elements of the cryogenic structures of frozen soils that form the walls of various gas-emission craters was carried out. Structural and morphological analyses were used as a methodological basis for studying gas-emission craters. This method involves a set of operations that establishes links between the cryogenic structure of the crater walls and the morphologies of their surfaces. In this study, it is concluded that gas-emission craters are the result of the self-development of local gas-dynamic geosystems that are in a non-equilibrium thermodynamic state with respect to the enclosing permafrost. Full article
(This article belongs to the Section Gas Emissions)
Show Figures

Figure 1

13 pages, 7438 KiB  
Technical Note
A Statistical Approach to Satellite Time Series Analysis to Detect Changes in Thermal Activities: The Vulcano Island 2021 Crisis
by Federico Rabuffi, Malvina Silvestri, Massimo Musacchio, Vito Romaniello and Maria Fabrizia Buongiorno
Remote Sens. 2022, 14(16), 3933; https://doi.org/10.3390/rs14163933 - 13 Aug 2022
Cited by 10 | Viewed by 2066
Abstract
Vulcano belongs to the seven volcanic islands forming the Aeolian archipelago (Italy) and has the privilege to define an eruptive style as “Vulcanian”. It has to be considered as an active volcano as its most recent activity demonstrated. Starting by late spring 2021, [...] Read more.
Vulcano belongs to the seven volcanic islands forming the Aeolian archipelago (Italy) and has the privilege to define an eruptive style as “Vulcanian”. It has to be considered as an active volcano as its most recent activity demonstrated. Starting by late spring 2021, the thermal state of the Vulcano summit area changed and the gas emission increased. During the summer and, in particular, starting from September, geophysical and geochemical signals, precisely those linked to the activity of the hydrothermal system that feeds the fumaroles of the Fossa crater, varied. The temperature of the gases emitted by the fumaroles on the crater rim has increased and the composition of the gases has showed an increase in CO2 and SO2 (carbon dioxide and sulfur dioxide) concentration. For such reasons, the authors decided to follow this event by analyzing the remotely sensed available data suitable for detecting changes in thermal state. By processing the TIRS (Landsat 8) and ASTER time series, two long-term surface temperature logs were obtained and, therefore, by adopting a statistical approach, an analysis in both space and time domains has emphasized a thermal signature since mid-September 2021. Full article
(This article belongs to the Special Issue Remote Sensing of Geothermal and Volcanic Environments)
Show Figures

Graphical abstract

18 pages, 6078 KiB  
Article
Monitoring Hydrothermal Activity Using Major and Trace Elements in Low-Temperature Fumarolic Condensates: The Case of La Soufriere de Guadeloupe Volcano
by Manuel Inostroza, Séverine Moune, Roberto Moretti, Vincent Robert, Magali Bonifacie, Elodie Chilin-Eusebe, Arnaud Burtin and Pierre Burckel
Geosciences 2022, 12(7), 267; https://doi.org/10.3390/geosciences12070267 - 30 Jun 2022
Cited by 11 | Viewed by 3648
Abstract
At the hydrothermal stage, volcanoes are affected by internal and external processes that control their fumarolic and eruptive activity. Monitoring hydrothermal activity is challenging given the diverse nature of the processes accounting for deeper magmatic and shallow hydrothermal sources. A better understanding of [...] Read more.
At the hydrothermal stage, volcanoes are affected by internal and external processes that control their fumarolic and eruptive activity. Monitoring hydrothermal activity is challenging given the diverse nature of the processes accounting for deeper magmatic and shallow hydrothermal sources. A better understanding of these processes has commonly been achieved by combining geochemical and geophysical techniques. However, existing geochemical techniques only include the surveillance of major gas components in fumarolic emissions or major ions in cold/thermal springs. This work presents a long-term (2017–2021) surveillance of major and trace elements in fumarolic condensates from the Cratère Sud vent, a low-temperature steam-rich emission from the La Soufriere de Guadeloupe volcano. This fumarole presented a fluctuating performance, offering a unique opportunity to reveal the behavior of major and trace elements, as well as the physicochemical processes affecting magmatic and hydrothermal sources. Time-series analyses allowed for the identification of pH-related chemical fluctuations associated with (1) variable inputs of deep magmatic components at the root of the hydrothermal system, (2) pressurization episodes of the hydrothermal system with increasing fluid–rock interaction, acid gas scrubbing, and vapor scavenging of metals, and (3) the decreased hydrothermal activity, decreasing scrubbing efficiency. Variations in the volatile content (e.g., S, Sb, B, Cl, Bi, Zn, Mo, Br, Cd, Ag, Cu, and Pb), the amount of leached rock-related elements (e.g., Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Rb, Sr, Y, Cs, Ba, REEs, and U), and variations in the concentration of Cl and S alone, are postulated as key parameters to monitor volcanic–hydrothermal systems in unrest, such as La Soufriere. Our results demonstrate that monitoring using condensates is a useful geochemical technique, complementing conventional methods, such as “Giggenbach” soda flasks or the so-called Multigas. Full article
(This article belongs to the Special Issue Magma Degassing from Magma at Depth to the Surface)
Show Figures

Figure 1

14 pages, 42908 KiB  
Article
Periglacial Landforms and Fluid Dynamics in the Permafrost Domain: A Case from the Taz Peninsula, West Siberia
by Natalya Misyurkeeva, Igor Buddo, Gleb Kraev, Aleksandr Smirnov, Alexey Nezhdanov, Ivan Shelokhov, Anna Kurchatova and Andrei Belonosov
Energies 2022, 15(8), 2794; https://doi.org/10.3390/en15082794 - 11 Apr 2022
Cited by 13 | Viewed by 2411
Abstract
Most of the developing oil and gas fields in Russia are located in Arctic regions and constructed on permafrost, where recent environmental changes cause multiple hazards for their infrastructure. The blowing-up of pingos, resulting in the formation of gas emission craters, is one [...] Read more.
Most of the developing oil and gas fields in Russia are located in Arctic regions and constructed on permafrost, where recent environmental changes cause multiple hazards for their infrastructure. The blowing-up of pingos, resulting in the formation of gas emission craters, is one of the disastrous processes associated both with these external changes and, likely, with deep sources of hydrocarbons. We traced the channels of fluid migration which link a gas features reservoirs with periglacial phenomena associated with such craters with the set of geophysical methods, including common depth point and shallow transient electromagnetic methods, on an area of a prospected gas field. We found correlated vertical anomalies of acoustic coherence and electrical resistivity associated with gas chimneys in the upper 500–600 m of the section. The thickness of the ice-bonded permafrost acting as a seal for fluids decreased in the chimney zone, forming 25–50 m deep pockets in the permafrost base. Three pingos out of six were located above chimneys in the study area of 200 km2. Two lakes with parapets typical for craters were found. We conclude that the combination of applied methods is efficacious in terms of identifying this type of hazard and locating potentially hazardous objects in the given territory. Full article
Show Figures

Figure 1

11 pages, 2835 KiB  
Article
Experimental Proof of a Solar-Powered Heat Pump System for Soil Thermal Stabilization
by Elizaveta S. Sharaborova, Taisia V. Shepitko and Egor Y. Loktionov
Energies 2022, 15(6), 2118; https://doi.org/10.3390/en15062118 - 14 Mar 2022
Cited by 17 | Viewed by 3269
Abstract
We suggested earlier a new sustainable method for permafrost thermal stabilization that combines passive screening of solar radiation and precipitation with active solar-powered cooling of the near-surface soil layer thus preventing heat penetration in depth. Feasibility of this method has been shown by [...] Read more.
We suggested earlier a new sustainable method for permafrost thermal stabilization that combines passive screening of solar radiation and precipitation with active solar-powered cooling of the near-surface soil layer thus preventing heat penetration in depth. Feasibility of this method has been shown by calculations, but needed experimental proof. In this article, we are presenting the results of soil temperature measurements obtained at the experimental implementation of this method outside of the permafrost area which actually meant higher thermal loads than in permafrost area. We have shown that near-surface soil layer is kept frozen during the whole summer, even at air temperatures exceeding +30 °C. Therefore, the method has been experimentally proven to be capable of sustaining soil frozen. In addition to usual building and structures’ thermal stabilization, the method could be used to prevent the development of thermokarst, gas emission craters, and landslides; greenhouse gases, chemical, and biological pollution from the upper thawing layers, at least in the area of human activities; protection against coastal erosion, and permafrost restoration after wildfires. Using commercially widely-available components, the technology can be scaled up for virtually any size objects. Full article
Show Figures

Figure 1

5 pages, 154 KiB  
Editorial
Gas Emission and Formation of Craters in the Arctic Permafrost Synopsis
by Evgeny Chuvilin and Natalia Sokolova
Geosciences 2022, 12(2), 46; https://doi.org/10.3390/geosciences12020046 - 18 Jan 2022
Cited by 1 | Viewed by 2580
Abstract
This Special Issue of Geosciences is a collection of twelve research and overview papers devoted to shallow Arctic permafrost as a natural reservoir that stores large amounts of bound gas, mainly methane [...] Full article
(This article belongs to the Special Issue Gas Emissions and Crater Formation in Arctic Permafrost)
15 pages, 3680 KiB  
Article
Experimental Study on the Impingement Characteristics of Self-Excited Oscillation Supercritical CO2 Jets Produced by Organ-Pipe Nozzles
by Mengda Zhang, Zhenlong Fang and Yi’nan Qian
Energies 2021, 14(22), 7637; https://doi.org/10.3390/en14227637 - 15 Nov 2021
Cited by 3 | Viewed by 1908
Abstract
Supercritical carbon dioxide (SCO2) jets are a promising method to assist drilling, enhance oil–gas production, and reduce greenhouse gas emissions. To further improve the drilling efficiency of SCO2 jet-assisted drilling, organ-pipe nozzles were applied to generate a self-excited oscillation SCO [...] Read more.
Supercritical carbon dioxide (SCO2) jets are a promising method to assist drilling, enhance oil–gas production, and reduce greenhouse gas emissions. To further improve the drilling efficiency of SCO2 jet-assisted drilling, organ-pipe nozzles were applied to generate a self-excited oscillation SCO2 jet (SEOSJ). The impact pressure oscillation and rock erosion capability of SEOSJs under both supercritical and gaseous CO2 (GCO2) ambient conditions were experimentally investigated. It was found that the impact pressure oscillation characteristics of SEOSJs produced by organ-pipe nozzles are dramatically affected by the oscillation chamber length. The optimum range of the dimensionless chamber length to generate the highest impact pressure peak and the strongest pressure oscillation is within 7–9. The dimensionless pressure peak and the pressure ratio decreases gradually with increasing pressure difference, whereas the pressure oscillation intensity increases with increasing pressure difference and the increasing rate decreases gradually. The dominant frequency was observed to decrease monotonically with increasing chamber length but increases with the increase of pressure difference. Moreover, the comparison of impingement characteristics of SEOSJs under different ambient conditions showed that the values of dimensionless peak impact pressure are similar under the two ambient conditions, and the SEOSJ achieves higher pressure oscillation intensity and dominant frequency in SCO2 at the same pressure difference. The rock breaking ability of the SEOSJ is closely related to its axial impact pressure. The erosion depth and mass loss of sandstone caused by the organ-pipe nozzle with the best impact pressure performance is higher than those produced by other nozzles. The SEOSJ results in a deeper and narrower crater in SCO2 than in GCO2 under the same pressure difference. The reported results provide guidance for SEOSJ applications and the design of an organ-pipe nozzle used for jet-assisted drilling. Full article
Show Figures

Figure 1

15 pages, 3103 KiB  
Article
Formation of Gas-Emission Craters in Northern West Siberia: Shallow Controls
by Evgeny Mikhailovich Chuvilin, Natalia Sergeevna Sokolova, Boris Aleksandrovich Bukhanov, Dinara Anvarovna Davletshina and Mikhail Yurievich Spasennykh
Geosciences 2021, 11(9), 393; https://doi.org/10.3390/geosciences11090393 - 17 Sep 2021
Cited by 16 | Viewed by 8523
Abstract
Gas-emission craters discovered in northern West Siberia may arise under a specific combination of shallow and deep-seated permafrost conditions. A formation model for such craters is suggested based on cryological and geological data from the Yamal Peninsula, where shallow permafrost encloses thick ground [...] Read more.
Gas-emission craters discovered in northern West Siberia may arise under a specific combination of shallow and deep-seated permafrost conditions. A formation model for such craters is suggested based on cryological and geological data from the Yamal Peninsula, where shallow permafrost encloses thick ground ice and lenses of intra- and subpermafrost saline cold water (cryopegs). Additionally, the permafrost in the area is highly saturated with gas and stores large accumulations of hydrocarbons that release gas-water fluids rising to the surface through faulted and fractured crusts. Gas emission craters in the Arctic can form in the presence of gas-filled cavities in ground ice caused by climate warming, rich sources of gas that can migrate and accumulate under pressure in the cavities, intrapermafrost gas-water fluids that circulate more rapidly in degrading permafrost, or weak permafrost caps over gas pools. Full article
(This article belongs to the Special Issue Permafrost and Gas Hydrate Response to Ground Temperature Rising)
Show Figures

Figure 1

21 pages, 7540 KiB  
Article
Permanent Gas Emission from the Seyakha Crater of Gas Blowout, Yamal Peninsula, Russian Arctic
by Vasily Bogoyavlensky, Igor Bogoyavlensky, Roman Nikonov, Vladimir Yakushev and Viacheslav Sevastyanov
Energies 2021, 14(17), 5345; https://doi.org/10.3390/en14175345 - 27 Aug 2021
Cited by 14 | Viewed by 3439
Abstract
The article is devoted to the four-year (2017–2020) monitoring of gas emissions from the bottom of the Seyakha Crater, located in the central part of the Yamal Peninsula (north of Western Siberia). The crater was formed on 28 June 2017 due to a [...] Read more.
The article is devoted to the four-year (2017–2020) monitoring of gas emissions from the bottom of the Seyakha Crater, located in the central part of the Yamal Peninsula (north of Western Siberia). The crater was formed on 28 June 2017 due to a powerful blowout, self-ignition and explosion of gas (mainly methane) at the site of a heaving mound in the river channel. On the basis of a comprehensive analysis of expeditionary geological and geophysical data (a set of geophysical equipment, including echo sounders and GPR was used) and remote sensing data (from space and with the use of UAVs), the continuing nature of the gas emissions from the bottom of the crater was proven. It was revealed that the area of gas seeps in 2019 and 2020 increased by about 10 times compared to 2017 and 2018. Gas in the cryolithosphere of the Arctic exists in free and hydrated states, has a predominantly methane composition, whereas this methane is of a biochemical, thermogenic and/or mixed type. It was concluded that the cryolithosphere of Yamal has a high level of gas saturation and is an almost inexhaustible unconventional source of energy resources for the serving of local needs. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

Back to TopTop