Thermal Conductivity of Frozen and Unfrozen Gas-Saturated Soils
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V.; Kondakov, V.V. Gas component of permafrost rock masses at Bovanenkovo gas condensate field (Yamal Penensula). Dokl. Akad. Nauk 1999, 369, 522–524. [Google Scholar]
- Chuvilin, E.; Ekimova, V.; Davletshina, D.; Sokolova, N.; Bukhanov, B. Evidence of gas emissions from permafrost in the Russian Arctic. Geosciences 2020, 10, 383. [Google Scholar] [CrossRef]
- Yakushev, V.S. Natural Gas and Gas Hydrates in Permafrost; VNIIGAZ: Moscow, Russia, 2009; p. 192. ISBN 978-5-89754-048-8. (In Russian) [Google Scholar]
- Yakushev, V. Environmental and technological problems for natural gas production in permafrost regions. Energies 2023, 16, 4522. [Google Scholar] [CrossRef]
- Bondarev, V.L.; Mirotvorskiy, M.Y.; Zvereva, V.B.; Oblekov, G.I.; Shaydullin, R.M.; Gudzenko, V.T. Above-Cenomanian sediments in the Yamal Peninsula: Gas contents and chemical compositions (a case study of the Bovanenkovo oil-and-gas-condensate field). Geol. Geofiz. Razrab. Neftyanykh Gazov. Mestorozhdenii 2008, 5, 22–34. (In Russian) [Google Scholar]
- Makhonina, N.A.; Perlova, E.V.; Yakushev, V.S.; Akhmedsafin, S.K. Permafrost gas accumulations in the Zapolyarnoye oil-gas-condensate field. Nauka Tekhnika Gazov. Promyshlennosti 2004, 1–2, 43–46. (In Russian) [Google Scholar]
- Shmelev, D.G.; Rogov, V.V.; Gubin, S.V.; Davydov, S.P. Cryolithogenic deposits on the right bank of the lower reaches of the Kolyma River. Vestn. Mosk. Univ. Ser. 5 Geogr. 2013, 3, 66–72. (In Russian) [Google Scholar]
- Streletskaya, I.D.; Vasiliev, A.A.; Oblogov, G.E.; Semenov, P.B.; Vanshtein, B.G.; Rivkina, E.M. Methane in ground ice and frozen sediments in the coastal zone and on the shelf of Kara Sea. J. Ice Snow 2018, 58, 65–77. [Google Scholar] [CrossRef]
- Kraev, G.; Belonosov, A.; Veremeeva, A.; Grabovskii, V.; Sheshukov, S.; Shelokhov, I.; Smirnov, A. Fluid migration through permafrost and the pool of greenhouse gases in frozen soils of an oil and gas field. Remote Sens. 2022, 14, 3662. [Google Scholar] [CrossRef]
- Perlshtein, G.Z.; Sergeev, D.O.; Tipenko, G.S.; Tumskoy, V.E.; Khimenkov, A.N.; Vlasov, A.N.; Merzlakov, V.P.; Stanilovskaya, J.V. Hydrocarbon gases and the cryolithozone of the Arctic Shelf. Arkt. Ekol. I Ekon. 2015, 2, 35–44. (In Russian) [Google Scholar]
- Khimenkov, A.N.; Vlasov, A.N.; Brushkov, A.V.; Koshurnikov, A.V.; Volkov-Bogorodsky, D.B.; Sergeev, D.O.; Gagarin, V.E.; Sobolev, P.A. Geosystems of Gas-Saturated Permafrost; Geoinfo: Moscow, Russia, 2021; p. 288. ISBN 978-5-9908493-3-4. (In Russian) [Google Scholar]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef]
- Are, F.E. The problem of hypogene gas emission into atmosphere. Kriosf. Zemli 1998, 2, 42–50. (In Russian) [Google Scholar]
- Collet, T.S.; Dallimore, S.R. Permafrost-associated gas hydrate. In Natural Gas Hydrates in Oceanic and Permafrost Environments; Max, M.D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands; London, UK, 2000; p. 414. ISBN 978-94-011-4387-5. [Google Scholar]
- Yakushev, V.S. Natural gas liberations around production wells at Russian Arctic gas fields. Geosciences 2020, 10, 184. [Google Scholar] [CrossRef]
- Kraev, G.; Rivkina, E.; Vishnivetskaya, T.; Belonosov, A.; van Huissteden, J.; Kholodov, A.; Smirnov, A.; Kudryavtsev, A.; Tshebaeva, K.; Zamolodchikov, D. Methane in gas shows from boreholes in epigenetic permafrost of Siberian Arctic. Geosciences 2019, 9, 67. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Kishankov, A.; Kazanin, A.; Kazanin, G. Distribution of permafrost and gas hydrates in relation to intensive gas emission in the central part of the Laptev Sea (Russian Arctic). Mar. Pet. Geol. 2022, 138, 105527. [Google Scholar] [CrossRef]
- Rivkina, E.M.; Samarkin, V.A.; Gilichinsky, D.A. Methane in permafrost rocks of the Kolyma-Indigirka lowland. Dokl. RAS 1992, 323, 559–562. (In Russian) [Google Scholar]
- Vasiliev, A.A.; Melnikov, V.P.; Zadorozhnaya, N.A.; Oblogov, G.E.; Streletskaya, I.D.; Savvichev, A.S. Doklady Akademii Nauk. 2022, Volume 505, pp. 113–118. Available online: https://www.mathnet.ru/php/journal.phtml?jrnid=dan&option_lang=eng (accessed on 15 October 2023). (In Russian).
- Cherbunina, M.Y.; Shmelev, D.G.; Krivenok, L.A. The effect of degassing method of frozen soils on the test results of methane concentration. Eng. Geol. 2018, 13, 62–73. (In Russian) [Google Scholar] [CrossRef]
- Zadorozhnaya, N.A.; Oblogov, G.E.; Vasiliev, A.A.; Streletskaya, I.D.; Malkova, G.V.; Semenov, P.B.; Vanshtein, B.G. Methane in frozen and thawing sediments of Western Russian Arctic. Earth’s Cryosphere 2022, 26, 41–55. (In Russian) [Google Scholar] [CrossRef]
- Kizyakov, A.; Khomutov, A.; Zimin, M.; Khairullin, R.; Babkina, E.; Dvornikov, Y.; Leibman, M. Microrelief associated with gas emission craters: Remote-sensing and field-based study. Remote Sens. 2018, 10, 677. [Google Scholar] [CrossRef]
- Dvornikov, Y.A.; Leibman, M.O.; Khomutov, A.V.; Kizyakov, A.I.; Semenov, P.; Bussmann, I.; Babkin, E.M.; Heim, B.; Portnov, A.; Babkina, E.A. Gas-emission craters of the Yamal and Gydan peninsulas: A proposed mechanism for lake genesis and development of permafrost landscapes. Permafr. Periglac. Process. 2019, 30, 146–162. [Google Scholar] [CrossRef]
- Chuvilin, E.; Stanilovskaya, J.; Titovsky, A.; Sinitsky, A.; Sokolova, N.; Bukhanov, B.; Spasennykh, M.; Cheremisin, A.; Grebenkin, S.; Davletshina, D. A Gas-emission crater in the Erkuta river valley, Yamal Peninsula: Characteristics and potential formation model. Geosciences 2020, 10, 170. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Yakushev, V.; Sevastyanov, V. Permanent gas emission from the Seyakha crater of gas blowout, Yamal Peninsula, Russian Arctic. Energies 2021, 14, 5345. [Google Scholar] [CrossRef]
- Bogoyavlensky, V. New data on mud volcanism in the Arctic on the Yamal Peninsula. Dokl. Earth Sci. 2023, 512, 847–853. [Google Scholar] [CrossRef]
- Zolkos, S.; Fiske, G.; Windholz, T.; Duran, G.; Yang, Z.; Olenchenko, V.; Faguet, A.; Natali, S.M. Detecting and Mapping Gas Emission Craters on the Yamal and Gydan Peninsulas, Western Siberia. Geosciences 2021, 11, 21. [Google Scholar] [CrossRef]
- Chuvilin, E.; Tipenko, G.; Bukhanov, B.; Istomin, V.; Pissarenko, D. Simulating thermal interaction of gas production wells with relict gas hydrate-bearing permafrost. Geosciences 2022, 12, 115. [Google Scholar] [CrossRef]
- Medvedsky, R.I. Construction and Operation of Oil and Gas Wells in Permafrost; Nedra: Moscow, Russia, 1987; 230p. (In Russian) [Google Scholar]
- STO Gazprom 2-3.2-036-2005; Methodological Guidelines for Taking into Account Geocryological Conditions for Selecting Production Well Designs. IRC Gazprom: Moscow, Russia, 2005; 62p. (In Russian)
- Chuvilin, E.M.; Davletshina, D.A.; Bukhanov, B.A.; Grebenkin, S.I.; Istomin, V.A.; Sergeeva, D.V.; Badetz, C.; Stanilovskaya, J.V. Experimental study of the influence of gas composition and gas pressure on the freezing temperature of pore water in gas saturated sediments. Earth’s Cryosphere 2019, 23, 49–57. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Davletshina, D.A.; Bukhanov, B.A.; Grebenkin, S.I.; Ogienko, M.V.; Badetz, C.; Stanilovskaya, J.V. Influence of gas composition and pressure on thermophysical properties of gas-saturated frozen and thawed sands. Earth’s Cryosphere 2020, 24, 49–54. [Google Scholar] [CrossRef]
- Chuvilin, E.; Bukhanov, B. Thermal conductivity of frozen sediments containing self-preserved pore gas hydrates at atmospheric pressure: An experimental study. Geosciences 2019, 9, 65. [Google Scholar] [CrossRef]
- Jahn, R.; Blume, H.P.; Asio, V.B.; Spaargaren, O.; Schad, P. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006; p. 97. ISBN 92-5-105521-1. [Google Scholar]
- Chuvilin, E.M.; Bukhanov, B.A.; Mukhametdinova, A.Z.; Grechishcheva, E.S.; Alekseev, A.G.; Istomin, V.A. Freezing point and unfrozen water contents of permafrost soils: Estimation by the water potential method. Cold Reg. Sci. Technol. 2022, 196, 103488. [Google Scholar] [CrossRef]
- Babichev, A.P.; Babushkin, N.A.; Bratkovskii, A.M. Physical Values. Reference Book; Energoatomizdat: Moscow, Russia, 1991; 1232p. (In Russian) [Google Scholar]
- Vargaftik, N.B. Reference Book on Thermophysical Properties of Gases and Liquids; Nauka: Moscow, Russia, 1972; 720p. (In Russian) [Google Scholar]
- Yershov, E.D. Cryolithogenesis; Nauka: Moscow, Russia, 1982; 211p. (In Russian) [Google Scholar]
- Yershov, E.D. General Geocryology; Cambridge University Press: Cambridge, UK, 1998; p. 580. [Google Scholar]
Sample | Particle Size Distribution, % | Salinity, % | Solid Density, g/cm3 | Type of Soil * | ||
---|---|---|---|---|---|---|
1–0.05 mm | 0.05–0.002 mm | <0.002 mm | ||||
Silt | 16.2 | 67.8 | 16.0 | 0.05 | 2.66 | Silt loam |
The Total Mineral Composition, % | |||||||||
---|---|---|---|---|---|---|---|---|---|
Quartz | Albite | Microcline | Illite | Chlorite | Amphiboles | Kaolinite | Smectite | Calcite | Siderite |
45.2 | 22.2 | 10.1 | 8.7 | 5.0 | 3.2 | 2.5 | 1.5 | 0.9 | 0.7 |
Sample | Moisture Content W, % | Density ρ, g/cm3 | Dry Density ρd, g/cm3 | Porosity n, % | Water Saturation Sw, % |
---|---|---|---|---|---|
Silt | 21 | 1.98 | 1.65 | 38 | 89 |
Cooling | Heating | ||||||||
---|---|---|---|---|---|---|---|---|---|
T, °C | +5 | +0.4 | −6 | −9 | −14.5 | −9 | −6 | +2.8 | |
P, MPa | |||||||||
0.1 | 1.53 | 1.47 | 2.25 | 2.25 | 2.27 | 2.27 | 2.27 | 1.78 | |
1.0 | 1.63 | 1.57 | 2.31 | 2.32 | 2.36 | 2.36 | 2.36 | 1.56 | |
2.0 | 1.64 | 1.64 | 2.37 | 2.38 | - | 2.38 | 2.38 | 1.47 |
Cooling | Heating | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T, °C | +5.6 | +0.5 | −6 | −9 | −14.5 | −9 | −6 | +1.7 | +5.7 | |
P, MPa | ||||||||||
0.1 | 1.44 | 1.45 | 2.01 | 2.02 | 2.03 | 2.03 | 2.03 | - | - | |
0.5 | 1.69 | 1.60 | 2.25 | 2.26 | 2.28 | 2.28 | 2.29 | 1.63 | 1.63 | |
0.9 | 1.79 | 1.69 | 2.30 | 2.27 | - | 2.27 | 2.32 | 1.72 | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuvilin, E.; Davletshina, D.; Bukhanov, B.; Grebenkin, S. Thermal Conductivity of Frozen and Unfrozen Gas-Saturated Soils. Geosciences 2023, 13, 347. https://doi.org/10.3390/geosciences13110347
Chuvilin E, Davletshina D, Bukhanov B, Grebenkin S. Thermal Conductivity of Frozen and Unfrozen Gas-Saturated Soils. Geosciences. 2023; 13(11):347. https://doi.org/10.3390/geosciences13110347
Chicago/Turabian StyleChuvilin, Evgeny, Dinara Davletshina, Boris Bukhanov, and Sergey Grebenkin. 2023. "Thermal Conductivity of Frozen and Unfrozen Gas-Saturated Soils" Geosciences 13, no. 11: 347. https://doi.org/10.3390/geosciences13110347
APA StyleChuvilin, E., Davletshina, D., Bukhanov, B., & Grebenkin, S. (2023). Thermal Conductivity of Frozen and Unfrozen Gas-Saturated Soils. Geosciences, 13(11), 347. https://doi.org/10.3390/geosciences13110347