Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = gammaretroviruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3199 KiB  
Article
Functional 20S Proteasomes in Retroviruses: Evidence in Favor
by Vladimir Morozov, Alexey Morozov and Vadim L. Karpov
Int. J. Mol. Sci. 2024, 25(21), 11710; https://doi.org/10.3390/ijms252111710 - 31 Oct 2024
Viewed by 1553
Abstract
Proteasomes are barrel-like cellular protein complexes responsible for the degradation of most intracellular proteins. Earlier, it has been shown that during assembly, hundreds of different cellular proteins are incorporated into retro-and herpes viruses. Among detected cellular proteins, there were different proteasome subunits (PS). [...] Read more.
Proteasomes are barrel-like cellular protein complexes responsible for the degradation of most intracellular proteins. Earlier, it has been shown that during assembly, hundreds of different cellular proteins are incorporated into retro-and herpes viruses. Among detected cellular proteins, there were different proteasome subunits (PS). Previous reports postulated the incorporation of 20S proteasome subunits and subunits of proteasome regulator complexes inside retroviruses. Here, we demonstrated the association of functional 20S proteasome with gammaretroviruses, betaretroviruses, and lentiviruses. Cleaved proteasome subunits β1, β2 and β5 were detected in tested viruses. Using fluorescent peptides and a cell-permeable proteasome activity probe, proteasome activity was detected in endogenous and exogenous retroviruses, including recombinant HIV-1. Taken together, our data favors the insertion of functional proteasomes into the retroviruses during assembly. The possible role of proteasomes in retroviruses is discussed. Full article
(This article belongs to the Special Issue The Interaction Between Cell and Virus, 2nd Edition)
Show Figures

Figure 1

17 pages, 2194 KiB  
Article
Long Terminal Repeats of Gammaretroviruses Retain Stable Expression after Integration Retargeting
by Dalibor Miklík, Martina Slavková, Dana Kučerová, Chahrazed Mekadim, Jakub Mrázek and Jiří Hejnar
Viruses 2024, 16(10), 1518; https://doi.org/10.3390/v16101518 - 25 Sep 2024
Cited by 1 | Viewed by 1257
Abstract
Retroviruses integrate into the genomes of infected host cells to form proviruses, a genetic platform for stable viral gene expression. Epigenetic silencing can, however, hamper proviral transcriptional activity. As gammaretroviruses (γRVs) preferentially integrate into active promoter and enhancer sites, the high transcriptional activity [...] Read more.
Retroviruses integrate into the genomes of infected host cells to form proviruses, a genetic platform for stable viral gene expression. Epigenetic silencing can, however, hamper proviral transcriptional activity. As gammaretroviruses (γRVs) preferentially integrate into active promoter and enhancer sites, the high transcriptional activity of γRVs can be attributed to this integration preference. In addition, long terminal repeats (LTRs) of some γRVs were shown to act as potent promoters by themselves. Here, we investigate the capacity of different γRV LTRs to drive stable expression within a non-preferred epigenomic environment in the context of diverse retroviral vectors. We demonstrate that different γRV LTRs are either rapidly silenced or remain active for long periods of time with a predominantly active proviral population under normal and retargeted integration. As an alternative to the established γRV systems, the feline leukemia virus and koala retrovirus LTRs are able to drive stable, albeit intensity-diverse, transgene expression. Overall, we show that despite the occurrence of rapid silencing events, most γRV LTRs can drive stable expression outside of their preferred chromatin landscape after retrovirus integrations. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

15 pages, 1289 KiB  
Article
BET Inhibitor JQ1 Attenuates Feline Leukemia Virus DNA, Provirus, and Antigen Production in Domestic Cat Cell Lines
by Garrick M. Moll, Cheryl L. Swenson and Vilma Yuzbasiyan-Gurkan
Viruses 2023, 15(9), 1853; https://doi.org/10.3390/v15091853 - 31 Aug 2023
Cited by 1 | Viewed by 3602
Abstract
Feline leukemia virus (FeLV) is a cosmopolitan gammaretrovirus that causes lifelong infections and fatal diseases, including leukemias, lymphomas, immunodeficiencies, and anemias, in domestic and wild felids. There is currently no definitive treatment for FeLV, and while existing vaccines reduce the prevalence of progressive [...] Read more.
Feline leukemia virus (FeLV) is a cosmopolitan gammaretrovirus that causes lifelong infections and fatal diseases, including leukemias, lymphomas, immunodeficiencies, and anemias, in domestic and wild felids. There is currently no definitive treatment for FeLV, and while existing vaccines reduce the prevalence of progressive infections, they neither provide sterilizing immunity nor prevent regressive infections that result in viral reservoirs with the potential for reactivation, transmission, and the development of associated clinical diseases. Previous studies of murine leukemia virus (MuLV) established that host cell epigenetic reader bromodomain and extra-terminal domain (BET) proteins facilitate MuLV replication by promoting proviral integration. Here, we provide evidence that this facilitatory effect of BET proteins extends to FeLV. Treatment with the archetypal BET protein bromodomain inhibitor (+)-JQ1 and FeLV challenge of two phenotypically disparate feline cell lines, 81C fibroblasts and 3201 lymphoma cells, significantly reduced FeLV proviral load, total FeLV DNA load, and p27 capsid protein expression at nonlethal concentrations. Moreover, significant decreases in FeLV proviral integration were documented in 81C and 3201 cells. These findings elucidate the importance of BET proteins for efficient FeLV replication, including proviral integration, and provide a potential target for treating FeLV infections. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 1691 KiB  
Review
Porcine Endogenous Retroviruses and Xenotransplantation, 2021
by Joachim Denner
Viruses 2021, 13(11), 2156; https://doi.org/10.3390/v13112156 - 26 Oct 2021
Cited by 47 | Viewed by 7902
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate [...] Read more.
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

19 pages, 2603 KiB  
Article
Patterns of Coevolutionary Adaptations across Time and Space in Mouse Gammaretroviruses and Three Restrictive Host Factors
by Guney Boso, Oscar Lam, Devinka Bamunusinghe, Andrew J. Oler, Kurt Wollenberg, Qingping Liu, Esther Shaffer and Christine A. Kozak
Viruses 2021, 13(9), 1864; https://doi.org/10.3390/v13091864 - 18 Sep 2021
Cited by 7 | Viewed by 2916
Abstract
The classical laboratory mouse strains are genetic mosaics of three Mus musculus subspecies that occupy distinct regions of Eurasia. These strains and subspecies carry infectious and endogenous mouse leukemia viruses (MLVs) that can be pathogenic and mutagenic. MLVs evolved in concert with restrictive [...] Read more.
The classical laboratory mouse strains are genetic mosaics of three Mus musculus subspecies that occupy distinct regions of Eurasia. These strains and subspecies carry infectious and endogenous mouse leukemia viruses (MLVs) that can be pathogenic and mutagenic. MLVs evolved in concert with restrictive host factors with some under positive selection, including the XPR1 receptor for xenotropic/polytropic MLVs (X/P-MLVs) and the post-entry restriction factor Fv1. Since positive selection marks host-pathogen genetic conflicts, we examined MLVs for counter-adaptations at sites that interact with XPR1, Fv1, and the CAT1 receptor for ecotropic MLVs (E-MLVs). Results describe different co-adaptive evolutionary paths within the ranges occupied by these virus-infected subspecies. The interface of CAT1, and the otherwise variable E-MLV envelopes, is highly conserved; antiviral protection is afforded by the Fv4 restriction factor. XPR1 and X/P-MLVs variants show coordinate geographic distributions, with receptor critical sites in envelope, under positive selection but with little variation in envelope and XPR1 in mice carrying P-ERVs. The major Fv1 target in the viral capsid is under positive selection, and the distribution of Fv1 alleles is subspecies-correlated. These data document adaptive, spatial and temporal, co-evolutionary trajectories at the critical interfaces of MLVs and the host factors that restrict their replication. Full article
(This article belongs to the Special Issue RNA Viruses: Structure, Adaptation, and Evolution)
Show Figures

Figure 1

16 pages, 970 KiB  
Perspective
Across the Hall from Pioneers
by Alan Rein
Viruses 2021, 13(3), 491; https://doi.org/10.3390/v13030491 - 16 Mar 2021
Cited by 4 | Viewed by 2075
Abstract
I was fortunate to be associated with the lab of Stephen Oroszlan at the US National Cancer Institute from ~1982 until his conversion to Emeritus status in 1995. His lab made groundbreaking discoveries on retroviral proteins during that time, including many features that [...] Read more.
I was fortunate to be associated with the lab of Stephen Oroszlan at the US National Cancer Institute from ~1982 until his conversion to Emeritus status in 1995. His lab made groundbreaking discoveries on retroviral proteins during that time, including many features that could not have been inferred or anticipated from straightforward sequence information. Building on the Oroszlan lab results, my colleagues and I demonstrated that the zinc fingers in nucleocapsid proteins play a crucial role in genomic RNA encapsidation; that the N-terminal myristylation of the Gag proteins of many retroviruses is important for their association with the plasma membrane before particle assembly is completed; and that gammaretroviruses initially synthesize their Env protein as an inactive precursor and then truncate the cytoplasmic tail of the transmembrane protein, activating Env fusogenicity, during virus maturation. We also elucidated several aspects of the mechanism of translational suppression in pol gene expression in gammaretroviruses; amazingly, this is a fundamentally different mechanism of suppression from that in most other retroviral genera. Full article
(This article belongs to the Special Issue In Memory of Stephen Oroszlan)
Show Figures

Figure 1

13 pages, 2048 KiB  
Article
Effect of Small Polyanions on In Vitro Assembly of Selected Members of Alpha-, Beta- and Gammaretroviruses
by Alžběta Dostálková, Barbora Vokatá, Filip Kaufman, Pavel Ulbrich, Tomáš Ruml and Michaela Rumlová
Viruses 2021, 13(1), 129; https://doi.org/10.3390/v13010129 - 18 Jan 2021
Cited by 6 | Viewed by 4257
Abstract
The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and [...] Read more.
The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and other lentiviruses. Interestingly, cryo-electron tomography analysis of the immature particles of two lentiviruses, HIV-1 and equine infectious anemia virus (EIAV), revealed that the IP6 binding site is similar. Based on this amino acid conservation of the IP6 interacting site, it is presumed that the assembly of immature particles of all lentiviruses is stimulated by IP6. Although this specific region for IP6 binding may be unique for lentiviruses, it is plausible that other retroviral species also recruit some small polyanion to facilitate the assembly of their immature particles. To study whether the assembly of retroviruses other than lentiviruses can be stimulated by polyanionic molecules, we measured the effect of various polyanions on the assembly of immature virus-like particles of Rous sarcoma virus (RSV), a member of alpharetroviruses, Mason-Pfizer monkey virus (M-PMV) representative of betaretroviruses, and murine leukemia virus (MLV), a member of gammaretroviruses. RSV, M-PMV and MLV immature virus-like particles were assembled in vitro from truncated Gag molecules and the effect of selected polyanions, myo-inostol hexaphosphate, myo-inositol, glucose-1,6-bisphosphate, myo-inositol hexasulphate, and mellitic acid, on the particles assembly was quantified. Our results suggest that the assembly of immature particles of RSV and MLV was indeed stimulated by the presence of myo-inostol hexaphosphate and myo-inositol, respectively. In contrast, no effect on the assembly of M-PMV as a betaretrovirus member was observed. Full article
(This article belongs to the Special Issue Molecular Determinants of Enveloped Virus Assembly)
Show Figures

Figure 1

12 pages, 3677 KiB  
Article
Xenotropic Mouse Gammaretroviruses Isolated from Pre-Leukemic Tissues Include a Recombinant
by Devinka Bamunusinghe, Matthew Skorski, Alicia Buckler-White and Christine A. Kozak
Viruses 2018, 10(8), 418; https://doi.org/10.3390/v10080418 - 9 Aug 2018
Cited by 2 | Viewed by 3297
Abstract
Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic [...] Read more.
Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic host range, the X-MLVs are also present in the pre-leukemic tissues. We analyzed two such isolates from the AKR mice to identify their ERV progenitors and to look for evidence of recombination. AKR40 resembles the active X-ERV Bxv1, while AKR6 has a Bxv1-like backbone with substitutions that alter the long terminal repeat (LTR) enhancer and the envelope (env). AKR6 has a modified xenotropic host range, and its Env residue changes all lie outside of the domain that governs the receptor choice. The AKR6 segment spanning the two substitutions, but not the entire AKR6 env-LTR, exists as an ERV, termed Xmv67, in AKR, but not in the C57BL/6 mice. This suggests that AKR6 is the product of one, not two, recombination events. Xmv67 originated in the Asian mice. These data indicate that the recombinant X-MLVs that can be generated during lymphomagenesis, describe a novel X-ERV subtype found in the AKR genome, but not in the C57BL/6 reference genome, and identify residues in the envelope C-terminus that may influence the host range. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

10 pages, 644 KiB  
Review
Transspecies Transmission of Gammaretroviruses and the Origin of the Gibbon Ape Leukaemia Virus (GaLV) and the Koala Retrovirus (KoRV)
by Joachim Denner
Viruses 2016, 8(12), 336; https://doi.org/10.3390/v8120336 - 20 Dec 2016
Cited by 24 | Viewed by 6138
Abstract
Transspecies transmission of retroviruses is a frequent event, and the human immunodeficiency virus-1 (HIV-1) is a well-known example. The gibbon ape leukaemia virus (GaLV) and koala retrovirus (KoRV), two gammaretroviruses, are also the result of a transspecies transmission, however from a still unknown [...] Read more.
Transspecies transmission of retroviruses is a frequent event, and the human immunodeficiency virus-1 (HIV-1) is a well-known example. The gibbon ape leukaemia virus (GaLV) and koala retrovirus (KoRV), two gammaretroviruses, are also the result of a transspecies transmission, however from a still unknown host. Related retroviruses have been found in Southeast Asian mice although the sequence similarity was limited. Viruses with a higher sequence homology were isolated from Melomys burtoni, the Australian and Indonesian grassland melomys. However, only the habitats of the koalas and the grassland melomys in Australia are overlapping, indicating that the melomys virus may not be the precursor of the GaLV. Viruses closely related to GaLV/KoRV were also detected in bats. Therefore, given the fact that the habitats of the gibbons in Thailand and the koalas in Australia are far away, and that bats are able to fly over long distances, the hypothesis that retroviruses of bats are the origin of GaLV and KoRV deserves consideration. Analysis of previous transspecies transmissions of retroviruses may help to evaluate the potential of transmission of related retroviruses in the future, e.g., that of porcine endogenous retroviruses (PERVs) during xenotransplantation using pig cells, tissues or organs. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

13 pages, 916 KiB  
Article
Genetic Diversity of Koala Retroviral Envelopes
by Wenqin Xu, Kristen Gorman, Jan Clement Santiago, Kristen Kluska and Maribeth V. Eiden
Viruses 2015, 7(3), 1258-1270; https://doi.org/10.3390/v7031258 - 17 Mar 2015
Cited by 36 | Viewed by 8253
Abstract
Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this [...] Read more.
Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process. Full article
(This article belongs to the Special Issue Endogenous Viruses)
Show Figures

Figure 1

26 pages, 808 KiB  
Review
Origins of the Endogenous and Infectious Laboratory Mouse Gammaretroviruses
by Christine A. Kozak
Viruses 2015, 7(1), 1-26; https://doi.org/10.3390/v7010001 - 26 Dec 2014
Cited by 57 | Viewed by 11543
Abstract
The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups [...] Read more.
The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression. Full article
(This article belongs to the Special Issue Endogenous Viruses)
Show Figures

Figure 1

15 pages, 750 KiB  
Article
Genome-Wide Analysis of Alpharetroviral Integration in Human Hematopoietic Stem/Progenitor Cells
by Arianna Moiani, Julia Debora Suerth, Francesco Gandolfi, Ermanno Rizzi, Marco Severgnini, Gianluca De Bellis, Axel Schambach and Fulvio Mavilio
Genes 2014, 5(2), 415-429; https://doi.org/10.3390/genes5020415 - 16 May 2014
Cited by 23 | Viewed by 8461
Abstract
Gene transfer vectors derived from gamma-retroviruses or lentiviruses are currently used for the gene therapy of genetic or acquired diseases. Retroviral vectors display a non-random integration pattern in the human genome, targeting either regulatory regions (gamma-retroviruses) or the transcribed portion of expressed genes [...] Read more.
Gene transfer vectors derived from gamma-retroviruses or lentiviruses are currently used for the gene therapy of genetic or acquired diseases. Retroviral vectors display a non-random integration pattern in the human genome, targeting either regulatory regions (gamma-retroviruses) or the transcribed portion of expressed genes (lentiviruses), and have the potential to deregulate gene expression at the transcriptional or post-transcriptional level. A recently developed alternative vector system derives from the avian sarcoma-leukosis alpha-retrovirus (ASLV) and shows favorable safety features compared to both gamma-retroviral and lentiviral vectors in preclinical models. We performed a high-throughput analysis of the integration pattern of self-inactivating (SIN) alpha-retroviral vectors in human CD34+ hematopoietic stem/progenitor cells (HSPCs) and compared it to previously reported gamma-retroviral and lentiviral vectors integration profiles obtained in the same experimental setting. Compared to gamma-retroviral and lentiviral vectors, the SIN-ASLV vector maintains a preference for open chromatin regions, but shows no bias for transcriptional regulatory elements or transcription units, as defined by genomic annotations and epigenetic markers (H3K4me1 and H3K4me3 histone modifications). Importantly, SIN-ASLV integrations do not cluster in hot spots and target potentially dangerous genomic loci, such as the EVI2A/B, RUNX1 and LMO2 proto-oncogenes at a virtually random frequency. These characteristics predict a safer profile for ASLV-derived vectors for clinical applications. Full article
(This article belongs to the Special Issue Grand Celebration: 10th Anniversary of the Human Genome Project)
Show Figures

Figure 1

29 pages, 878 KiB  
Review
Viral and Cellular Requirements for the Nuclear Entry of Retroviral Preintegration Nucleoprotein Complexes
by Kenneth A. Matreyek and Alan Engelman
Viruses 2013, 5(10), 2483-2511; https://doi.org/10.3390/v5102483 - 7 Oct 2013
Cited by 105 | Viewed by 14269
Abstract
Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are [...] Read more.
Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are dependent on the passage of target cells through mitosis, where they are believed to access chromosomes when the nuclear envelope dissolves for cell division. Contrastingly, lentiviruses such as HIV-1 infect non-dividing cells, and are believed to enter the nucleus by passing through the nuclear pore complex. While numerous virally encoded elements have been proposed to be involved in HIV-1 nuclear import, recent evidence has highlighted the importance of HIV-1 capsid. Furthermore, capsid was found to be responsible for the viral requirement of various nuclear transport proteins, including transportin 3 and nucleoporins NUP153 and NUP358, during infection. In this review, we describe our current understanding of retroviral nuclear import, with emphasis on recent developments on the role of the HIV-1 capsid protein. Full article
(This article belongs to the Special Issue Viral Nuclear Import)
Show Figures

Figure 1

Back to TopTop