Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = future pest control extent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9002 KiB  
Article
Projecting the Potential Global Distribution of Sweetgum Inscriber, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae) Concerning the Host Liquidambar styraciflua Under Climate Change Scenarios
by Kaitong Xiao, Lei Ling, Ruixiong Deng, Beibei Huang, Yu Cao, Qiang Wu, Hang Ning and Hui Chen
Insects 2024, 15(11), 897; https://doi.org/10.3390/insects15110897 - 18 Nov 2024
Viewed by 1616
Abstract
Acanthotomicus suncei is a newly discovered bark beetle in China that significantly threatens the American sweetgum Liquidambar styraciflua. In recent years, this pest has spread from its original habitat to many surrounding cities, causing substantial economic and ecological losses. Considering the wide [...] Read more.
Acanthotomicus suncei is a newly discovered bark beetle in China that significantly threatens the American sweetgum Liquidambar styraciflua. In recent years, this pest has spread from its original habitat to many surrounding cities, causing substantial economic and ecological losses. Considering the wide global distribution of its host, Liquidambar styraciflua, this pest is likely to continue to spread and expand. Once the pest colonizes a new climatically suitable area, the consequences could be severe. Therefore, we employed the CLIMEX and Random Forests model to predict the potential suitable distribution of A. suncei globally. The results showed that A. suncei was mainly distributed in Southern China, in South Hokkaido in Japan, Southern USA, the La Plata Plain in South America, southeastern Australia, and the northern Mediterranean; these areas are located in subtropical monsoon, monsoonal humid climates, or Mediterranean climate zones. Seasonal rainfall, especially in winter, is a key environmental factor that affects the suitable distribution of A. suncei. Under future climates, the total suitable area of A. suncei is projected to decrease to a certain extent. However, changes in its original habitat require serious attention. We found that A. suncei exhibited a spreading trend in Southwest, Central, and Northeast China. Suitable areas in some countries in Southeast and South Asia bordering China are also expected to show an increased distribution. The outward spread of this pest via sea transportation cannot be ignored. Hence, quarantine efforts should be concentrated in high-suitability regions determined in this study to protect against the occurrence of hosts that may contain A. suncei, thereby avoiding its long-distance spread. Long-term sentinel surveillance and control measures should be carried out as soon as A. suncei is detected, especially in regions with high suitability. Thus, our findings establish a theoretical foundation for quarantine and control measures targeting A. suncei. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

11 pages, 4914 KiB  
Article
Prediction of the Global Distribution of Arhopalus rusticus under Future Climate Change Scenarios of the CMIP6
by Yuhang Fan, Xuemei Zhang, Yuting Zhou and Shixiang Zong
Forests 2024, 15(6), 955; https://doi.org/10.3390/f15060955 - 30 May 2024
Cited by 4 | Viewed by 1192
Abstract
Arhopalus rusticus is a significant forestry pest known for its destructive impact on various host plants. This species, commonly found in coniferous forests across the Northern Hemisphere, has successfully spread to regions like New Zealand, Australia, and South America. This research is based [...] Read more.
Arhopalus rusticus is a significant forestry pest known for its destructive impact on various host plants. This species, commonly found in coniferous forests across the Northern Hemisphere, has successfully spread to regions like New Zealand, Australia, and South America. This research is based on the known distribution sites of A. rusticus. Projections are made for the potential global distribution of A. rusticus under historical climatic conditions (1970–2000) and future climatic conditions (2081–2100) for the four forcing scenarios of the Coupled Model International Comparison Program 6 (CMIP6). The aim was to analyze the effects of climate change on the distribution range of this pest and its invasion trend in the southern hemisphere, and to support relevant departments in enhancing the effectiveness of forestry pest control strategies. The study utilized the Biomod2 software package in R to compare six models: generalized linear models (GLMs), generalized additive models (GAMs), multivariate adaptive regression splines (MARSs), artificial neural networks (ANNs), classification and regression trees (CTAs), and random forests (RFs) for modeling species distributions. The optimal model was selected based on evaluation indexes such as AUC and TSS. Projections of A. rusticus distribution under historical and future climate scenarios were created. The prediction results were visualized using ArcGIS software (version 10.2) to classify fitness levels and calculate distribution areas. Based on evaluation metrics, random forests (RFs) demonstrated the highest average assessment index scores, indicating high prediction accuracy (AUC = 0.99, TSS = 0.91, Kappa = 0.93). Model predictions revealed that, under historical climatic conditions, A. rusticus was predominantly found in northern Europe, eastern Asia, eastern and southwestern coastal regions of North America, and there were also highly suitable regions in parts of the southern hemisphere, including central and southwestern Argentina, southern Australia, New Zealand, and South Africa. Among these models, each of the CMIP6’s different climate prediction scenarios had a significant impact on the predicted distribution of A. rusticus. The SSP126 scenario depicted the broadest range of suitability, while the SSP585 scenario presented the narrowest and, overall, the extent of highly suitable regions was contracting. Multi-model predictions suggested that the potential distribution area of A. rusticus during the period of 2081–2100 would likely expand compared to that of 1970–2000, ranging from an increase of 1.13% (SSP126) up to 6.61% (SSP585), positively correlating with the level of radiative forcing. Notably, the most substantial growth was observed in potentially low-suitability region, escalating from 1.17% (SSP126) to 5.55% (SSP585). The distribution of A. rusticus shows decreasing trends from coastal areas to inland areas and from high to low level suitability of regions, and further expansion into the southern hemisphere under future climate conditions. Therefore, quarantine efforts at ports of entry should be strengthened in areas that are not currently infested but are at risk of invasion, and precise preventive measures should be strengthened in areas that are at risk of further expansion under future climatic conditions to prevent its spread to inland areas. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

20 pages, 2827 KiB  
Article
Public Attitudes towards Forest Pest Damage Cost and Future Control Extent: A Case Study from Two Cities of Pakistan
by Umer Hayat, Aqsa Abbas and Juan Shi
Forests 2024, 15(3), 544; https://doi.org/10.3390/f15030544 - 15 Mar 2024
Cited by 3 | Viewed by 1796
Abstract
Infestations of pests are perhaps an anthropogenic catastrophe for trees. Aeolesthes sarta (Sart longhorned beetle—SLB) is one of the most severe pests that cause serious damage to a number of hardwood tree species, i.e., Populus, Salix, Acer, Juglans, and [...] Read more.
Infestations of pests are perhaps an anthropogenic catastrophe for trees. Aeolesthes sarta (Sart longhorned beetle—SLB) is one of the most severe pests that cause serious damage to a number of hardwood tree species, i.e., Populus, Salix, Acer, Juglans, and Malus. To investigate people’s attitudes towards pest damage cost and future control extent of SLB, a door-to-door method was adopted to survey two major cities (Quetta—QU and Peshawar—PE) of the northwestern region of Pakistan where this pest has caused severe damage. Respondents were asked about SLB pest knowledge, pest damage costs, preferences for control choices, and program extent. According to respondents, more trees (181 ± 1.20 trees/ha/annum) were damaged in QU compared to PE. Populus spp. was the dominant tree genre that attacked and damaged the most. Around 85% of respondents from both cities stated the pest damage cost was calculated as high for QU (480,840.80 ± 4716.94$/annum) compared to PE. Respondents in both locations strongly supported (more than 82%) biological control of future SLB outbreaks. They all agreed that protecting ecologically vulnerable places and wildlife habitats should be the primary priority in a future SLB outbreak. Respondents from both cities who preferred to protect more land area in future SLB outbreaks were calculated to be high for QU (61%) compared to PE (58%). However, city variations in opinions regarding forest-type priority that should be protected and control options were observed. Socio-demographic characteristics were discovered to impact pest damage cost positively, as well as preferred SLB control extent. The findings of this study can help policymakers and forest managers develop publicly permissible pest control plans and make more accurate predictions about future pest outbreaks. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

40 pages, 569 KiB  
Review
Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering
by Ashutosh Pathak, Shamshadul Haq, Neelam Meena, Pratibha Dwivedi, Shanker Lal Kothari and Sumita Kachhwaha
Plants 2023, 12(17), 3126; https://doi.org/10.3390/plants12173126 - 30 Aug 2023
Cited by 15 | Viewed by 3079
Abstract
The agricultural practices of breeding, farm management and cultivation have improved production, to a great extent, in order to meet the food demands of a growing population. However, the newer challenges of climate change, global warming, and nutritional quality improvement will have to [...] Read more.
The agricultural practices of breeding, farm management and cultivation have improved production, to a great extent, in order to meet the food demands of a growing population. However, the newer challenges of climate change, global warming, and nutritional quality improvement will have to be addressed under a new scenario. Plant biotechnology has emerged as a reliable tool for enhancing crop yields by protecting plants against insect pests and metabolic engineering through the addition of new genes and, to some extent, nutritional quality improvement. Plant tissue culture techniques have provided ways for the accelerated clonal multiplication of selected varieties with the enhanced production of value-added plant products to increase modern agriculture. The in vitro propagation method has appeared as a pre-eminent approach for the escalated production of healthy plants in relatively shorter durations, also circumventing seasonal effects. However, there are various kinds of factors that directly or indirectly affect the efficiency of in vitro regeneration like the concentration and combination of growth regulators, variety/genotype of the mother plant, explant type, age of seedlings and other nutritional factors, and elicitors. Nanotechnology as one of the latest and most advanced approaches in the material sciences, and can be considered to be very promising for the improvement of crop production. Nanomaterials have various kinds of properties because of their small size, such as an enhanced contact surface area, increased reactivity, stability, chemical composition, etc., which can be employed in plant sciences to alter the potential and performance of plants to improve tissue culture practices. Implementing nanomaterials with in vitro production procedures has been demonstrated to increase the shoot multiplication potential, stress adaptation and yield of plant-based products. However, nanotoxicity and biosafety issues are limitations, but there is evidence that implies the promotion and further exploration of nanoparticles in agriculture production. The incorporation of properly designed nanoparticles with tissue culture programs in a controlled manner can be assumed as a new pathway for sustainable agriculture development. The present review enlists different studies in which treatment with various nanoparticles influenced the growth and biochemical responses of seed germination, as well as the in vitro morphogenesis of many crop species. In addition, many studies suggest that nanoparticles can be useful as elicitors for elevating levels of important secondary metabolites in in vitro cultures. Recent advancements in this field also depict the suitability of nanoparticles as a promising carrier for gene transfer, which show better efficiency than traditional Agrobacterium-mediated delivery. This review comprehensively highlights different in vitro studies that will aid in identifying research gaps and provide future directions for unexplored areas of research in important crop species. Full article
(This article belongs to the Special Issue In Vitro Morphogenesis of Plants)
28 pages, 3877 KiB  
Review
Potential Strategies in the Biopesticide Formulations: A Bibliometric Analysis
by Fabian Hernandez-Tenorio, Alejandra M. Miranda, Carlos A. Rodríguez, Catalina Giraldo-Estrada and Alex A. Sáez
Agronomy 2022, 12(11), 2665; https://doi.org/10.3390/agronomy12112665 - 27 Oct 2022
Cited by 25 | Viewed by 7934
Abstract
Biopesticides are pest and pathogen management agents based on living microorganisms or natural products (botanical origin). Due to their natural origins, they stand out as an environmentally friendly tool, since they quickly decompose and minimize pollution problems produced by synthetic pesticides. However, these [...] Read more.
Biopesticides are pest and pathogen management agents based on living microorganisms or natural products (botanical origin). Due to their natural origins, they stand out as an environmentally friendly tool, since they quickly decompose and minimize pollution problems produced by synthetic pesticides. However, these products present significant challenges that affect the bioactivities of the active components, due to the degradation of the biomass or bioactive metabolite by factors such as air, light, and temperature. Therefore, in this study, a systematic search of the Scopus database was conducted and scientometric tools were used to evaluate formulation techniques and approaches that seek to improve the bioactivities of natural preparations. The results showed that published research on biopesticides has significantly increased by 71.24% in the last decade (2011–2021). Likewise, the bibliometrics showed, through temporal flow analysis, and in the period from 2010 to 2021, investigations evolved have toward the use of nanotechnology, with the purpose of improving and potentiating the formulations of biopesticides. Consequently, nanotechnology tools can be classified as current strategies of interest that allow the increase and protection of bioefficacy to a greater extent than traditional biopesticide preparations. This review constitutes an important contribution to future research and expands the panorama in relation to biopesticide formulations for the control of agricultural pests. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

13 pages, 1493 KiB  
Review
A Review of Franklinothrips vespiformis (Thysanoptera: Aeolothripidae): Life History, Distribution, and Prospects as a Biological Control Agent
by Mubasher Hussain, Zhaohong Wang, Steven P. Arthurs, Jing Gao, Fengxian Ye, Lingling Chen and Runqian Mao
Insects 2022, 13(2), 108; https://doi.org/10.3390/insects13020108 - 18 Jan 2022
Cited by 5 | Viewed by 5484
Abstract
Predatory species comprise a small but important and often overlooked component of the Thysanoptera. A case in point, the ant-mimicking Franklinothrips are widely distributed in the tropics and are considered important generalist natural enemies for thrips and some other small arthropod prey. Franklinothrips [...] Read more.
Predatory species comprise a small but important and often overlooked component of the Thysanoptera. A case in point, the ant-mimicking Franklinothrips are widely distributed in the tropics and are considered important generalist natural enemies for thrips and some other small arthropod prey. Franklinothrips present an addition to biocontrol applications, i.e., greenhouse or commercial application for certain target pests and situations. Current knowledge, including distribution, biological features, life history pa rameters, prey specificity, host plant associations and lass production is yet insufficient to decide to what extent Franklinothrips could contribute for biological control programs. In this review, we summarized the geographical background, morphology, and prey associations, with a focus on F. vespiformis, the most widely distributed species of predatory thrips. This literature review serves as the basis for future research into the use of Franklinothrips as biocontrol agents for economically significant insect and mite pests in China and elsewhere. Full article
(This article belongs to the Special Issue Economic Pest Thrips: Biology, Ecology, and Population Genetics)
Show Figures

Figure 1

33 pages, 640 KiB  
Review
Agrobiological Interactions of Essential Oils of Two Menthol Mints: Mentha piperita and Mentha arvensis
by Danuta Kalemba and Agnieszka Synowiec
Molecules 2020, 25(1), 59; https://doi.org/10.3390/molecules25010059 - 23 Dec 2019
Cited by 53 | Viewed by 13857
Abstract
This review article discusses the active constituents and potential of two menthol mint oils, Mentha piperita (MPEO) and Mentha arvensis (MAEO), as natural sources for botanical pesticides. The biological activities of these menthol mint oils, which can be useful in agriculture, have been [...] Read more.
This review article discusses the active constituents and potential of two menthol mint oils, Mentha piperita (MPEO) and Mentha arvensis (MAEO), as natural sources for botanical pesticides. The biological activities of these menthol mint oils, which can be useful in agriculture, have been broadly researched, especially toward phytotoxic microorganisms. To a lesser extent, the insecticidal and herbicidal activities of mint EOs have also been studied. It is apparent that the prospect of using menthol mint oils in agriculture is increasing in popularity. A number of investigations showed that the in vitro efficacy of MPEO and MAEO, as well as that of their main constituent, menthol, is pronounced. The results of in vitro research are useful for choosing EOs for further investigations. However, it is clear that in situ experiments are crucial and should be more extensively developed. At the same time, known techniques are to be applied to this area and new methods should be worked out, aiming at the improvement of EOs’ pesticidal efficacy and cost-effectiveness, for future implementation in agricultural pest control. Full article
(This article belongs to the Special Issue Essential Oils in Weed Control and Food Preservation)
Show Figures

Figure 1

21 pages, 4512 KiB  
Article
The Effects of Climate Change on Pine Wilt Disease in South Korea: Challenges and Prospects
by Hyunjin An, Sangmin Lee and Sung Ju Cho
Forests 2019, 10(6), 486; https://doi.org/10.3390/f10060486 - 5 Jun 2019
Cited by 30 | Viewed by 5112
Abstract
This study assessed the damage and the potential economic threat of pine wilt disease, which is the most common disease caused by forest-integrated pests in Korea. To estimate the rate of damage by pine wilt disease, a structural damage function was implemented. The [...] Read more.
This study assessed the damage and the potential economic threat of pine wilt disease, which is the most common disease caused by forest-integrated pests in Korea. To estimate the rate of damage by pine wilt disease, a structural damage function was implemented. The nonlinear panel probit model and the generalized estimated equation (GEE) were used for the estimation. The estimated damage function and representative concentration pathways (RCP)8.5 data were used to predict the future damage rate by pests caused by climate change. In the assessment of the economic impact on forests, the dynamic optimization model was introduced. The concept of environmental payment was introduced to consider the economic value of non-timber benefits. For the economic analysis, three scenarios were established, i.e., no pest outbreak (baseline), pest infestation (no control), and pest infestation (prevention and control), and the forest management revenues that included the wood and non-wood materials for each scenario were compared. On the basis of the results of the analysis, a simulation was conducted to investigate the changes in forest management revenues according to changes in timber market prices, environmental payments, and climate change. The prediction results confirmed that the future damage by pine wilt disease and the extent of the damaged areas will increase as a consequence of climate change. In addition, the analysis of the economic impact showed that the increase of pest damage caused by climate change will worsen the forest management revenues. As pest damage brought on by climate change is expected to increase uncertainties and economic losses, there is a marked need to review the policies that so far have been focusing only on post-response tasks. In addition to a proper post-incident management, it is necessary to secure the sense of control and stability over the matter through the reinforcement of pre-incident management. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

14 pages, 2696 KiB  
Article
Automated Remote Insect Surveillance at a Global Scale and the Internet of Things
by Ilyas Potamitis, Panagiotis Eliopoulos and Iraklis Rigakis
Robotics 2017, 6(3), 19; https://doi.org/10.3390/robotics6030019 - 22 Aug 2017
Cited by 71 | Viewed by 15146
Abstract
Τhe concept of remote insect surveillance at large spatial scales for many serious insect pests of agricultural and medical importance has been introduced in a series of our papers. We augment typical, low-cost plastic traps for many insect pests with the necessary optoelectronic [...] Read more.
Τhe concept of remote insect surveillance at large spatial scales for many serious insect pests of agricultural and medical importance has been introduced in a series of our papers. We augment typical, low-cost plastic traps for many insect pests with the necessary optoelectronic sensors to guard the entrance of the trap to detect, time-stamp, GPS tag, and—in relevant cases—identify the species of the incoming insect from their wingbeat. For every important crop pest, there are monitoring protocols to be followed to decide when to initiate a treatment procedure before a serious infestation occurs. Monitoring protocols are mainly based on specifically designed insect traps. Traditional insect monitoring suffers in that the scope of such monitoring: is curtailed by its cost, requires intensive labor, is time consuming, and an expert is often needed for sufficient accuracy which can sometimes raise safety issues for humans. These disadvantages reduce the extent to which manual insect monitoring is applied and therefore its accuracy, which finally results in significant crop loss due to damage caused by pests. With the term ‘surveillance’ we intend to push the monitoring idea to unprecedented levels of information extraction regarding the presence, time-stamping detection events, species identification, and population density of targeted insect pests. Insect counts, as well as environmental parameters that correlate with insects’ population development, are wirelessly transmitted to the central monitoring agency in real time and are visualized and streamed to statistical methods to assist enforcement of security control to insect pests. In this work, we emphasize how the traps can be self-organized in networks that collectively report data at local, regional, country, continental, and global scales using the emerging technology of the Internet of Things (IoT). This research is necessarily interdisciplinary and falls at the intersection of entomology, optoelectronic engineering, data-science, and crop science and encompasses the design and implementation of low-cost, low-power technology to help reduce the extent of quantitative and qualitative crop losses by many of the most significant agricultural pests. We argue that smart traps communicating through IoT to report in real-time the level of the pest population from the field straight to a human controlled agency can, in the very near future, have a profound impact on the decision-making process in crop protection and will be disruptive of existing manual practices. In the present study, three cases are investigated: monitoring Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using (a) Picusan and (b) Lindgren trap; and (c) monitoring various stored grain beetle pests using the stored-grain pitfall trap. Our approach is very accurate, reaching 98–99% accuracy on automatic counts compared with real detected numbers of insects in each type of trap. Full article
(This article belongs to the Special Issue Agriculture Robotics)
Show Figures

Figure 1

Back to TopTop