Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = fusion circRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3811 KB  
Article
Long Circulating RNAs Packaged in Extracellular Vesicles: Prospects for Improved Risk Assessment in Childhood B-Cell Acute Lymphoblastic Leukemia
by Lucas Poncelet, Chantal Richer, Angela Gutierrez-Camino, Teodor Veres and Daniel Sinnett
Int. J. Mol. Sci. 2025, 26(9), 3956; https://doi.org/10.3390/ijms26093956 - 22 Apr 2025
Cited by 1 | Viewed by 1277
Abstract
Analysis of tumoral RNA from bone marrow (BM) biopsy is essential for diagnosing childhood B-cell acute lymphoblastic leukemia (B-ALL), risk stratification, and monitoring, by detecting fusions and gene expression patterns. However, frequent BM biopsies are invasive and traumatic for patients. Small extracellular vesicles [...] Read more.
Analysis of tumoral RNA from bone marrow (BM) biopsy is essential for diagnosing childhood B-cell acute lymphoblastic leukemia (B-ALL), risk stratification, and monitoring, by detecting fusions and gene expression patterns. However, frequent BM biopsies are invasive and traumatic for patients. Small extracellular vesicles (sEVs) circulating in blood contain a variety of biomolecules, including RNA, that may contribute to cancer progression, offering a promising source of non-invasive biomarkers from liquid biopsies. While most EV studies have focused on small RNAs like microRNAs (miRNAs), the role of longer RNA species, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), remains underexplored despite their demonstrated potential for risk-based patient stratification when starting from BM biopsies. We used immuno-purification to isolate sEVs from peripheral blood at diagnosis in B-ALL patients and cell model-based conditioned culture medium (CCM) with ETV6::RUNX1 and TCF3::PBX1 fusions. Using whole-transcriptome sequencing targeting transcripts over 200 nt and a novel data analysis pipeline, we identified 102 RNA transcripts (67 mRNAs, 16 lncRNAs, 10 circRNAs, 4 pseudogenes, and 5 others) in patient-derived sEVs. These transcripts could serve as biomarkers for two distinct molecular subgroups of B-ALL, each with different risk profiles at diagnosis. This is the first study characterizing the long transcriptome in blood-derived sEVs for childhood B-ALL, highlighting the potential use of circulating RNAs for improved risk-based stratification. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 3303 KB  
Article
Molecular Characteristics of Circ_002156 and Its Effects on Proliferation and Differentiation of Caprine Skeletal Muscle Satellite Cells
by Yuanhua Gu, Jiyuan Shen, Zhiyun Hao, Huimin Zhen, Xinmiao Wu, Jiqing Wang, Mingna Li, Chunyan Ren, Yuan Liu, Yuan Zhao, Pan Yang and Xuanyu Wang
Int. J. Mol. Sci. 2024, 25(23), 12745; https://doi.org/10.3390/ijms252312745 - 27 Nov 2024
Viewed by 1158
Abstract
The proliferation and differentiation of skeletal muscle satellite cells (SMSCs) are responsible for the development of skeletal muscle. In our previous study, circ_002156 was found to be highly expressed in caprine Longissimus Dorsi muscle, but the regulatory role of the circular RNAs (circRNA) [...] Read more.
The proliferation and differentiation of skeletal muscle satellite cells (SMSCs) are responsible for the development of skeletal muscle. In our previous study, circ_002156 was found to be highly expressed in caprine Longissimus Dorsi muscle, but the regulatory role of the circular RNAs (circRNA) in goat SMSCs remains unclear. In this study, the authenticity of circ_002156 was validated, and its structurally characteristic and cellular localization as well as tissue expression of circ_002156 and its parent genes were investigated. Moreover, the effects of circ_002156 on the viability, proliferation, and differentiation of SMSCs were also studied. The circ_002156 is located on caprine chromosome 19 with a length of 36,478. The circRNA structurally originates from myosin heavy chain 2 (MYH2), MYH1, and MYH4 as well as intergenic sequences among the parent genes. RT-PCR and Sanger sequencing confirmed the authenticity of circ_002156. Most circ_002156 (55.5%) was expressed in the nuclei of SMSCs, while 44.5% of circ_002156 was located in the cytoplasm. The circ_002156 and its three parent genes had higher expression levels in the triceps brachii, quadriceps femoris, and longissimus dorsi muscle tissues than in the other five tissues. The expression of circ_002156 and its parent genes MYH1 and MYH4 reached the maximum on day 8 of differentiation, while MYH2 in expression reached the peak on day 4 after differentiation. The Pearson correlation coefficients revealed that circ_002156 had moderate or high positive correlations with the three parent genes in the expression of both quadriceps femoris muscle and SMSCs during different differentiation stages. The small interfering RNA circ_002156 (named si-circ_002156) remarkably increased the viability of the SMSCs. The si-circ_002156 also increased the number and parentage of Edu-labeled positive SMSCs as well as the expression levels of four cell proliferation marker genes. These suggest that circ_002156 inhibited the proliferation of SMSCs. Meanwhile, si-circ_002156 decreased the area of MyHC-labeled positive myotubes, the myotube fusion index, and myotube size as well as the expression of its three parent genes and four cell differentiation marker genes, suggesting a positive effect of circ_002156 on the differentiation of SMSCs. This study contributes to a better understanding of the roles of circ_002156 in the proliferation and differentiation of SMSCs. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3173 KB  
Article
AML1-ETO-Related Fusion Circular RNAs Contribute to the Proliferation of Leukemia Cells
by Ying Wang, Yu Liu, Yingxi Xu, Haiyan Xing, Zheng Tian, Kejing Tang, Qing Rao, Min Wang and Jianxiang Wang
Int. J. Mol. Sci. 2023, 24(1), 71; https://doi.org/10.3390/ijms24010071 - 21 Dec 2022
Cited by 4 | Viewed by 3033
Abstract
The AML1-ETO (RUNX1-RUNX1T1) fusion gene created by the chromosome translocation t(8;21) (q21;q22) is one of the essential contributors to leukemogenesis. Only a few studies in the literature have focused on fusion gene-derived circular RNAs (f-circRNAs). Here, we report several AML1-ETO-related fusion [...] Read more.
The AML1-ETO (RUNX1-RUNX1T1) fusion gene created by the chromosome translocation t(8;21) (q21;q22) is one of the essential contributors to leukemogenesis. Only a few studies in the literature have focused on fusion gene-derived circular RNAs (f-circRNAs). Here, we report several AML1-ETO-related fusion circular RNAs (F-CircAEs) in AML1-ETO-positive cell lines and primary patient blasts. Functional studies demonstrate that the over-expression of F-CircAE in NIH3T3 cells promotes cell proliferation in vitro and in vivo. F-CircAE expression enhances the colony formation ability of c-Kit+ hematopoietic stem and progenitor cells (HSPCs). Meanwhile, the knockdown of endogenous F-CircAEs can inhibit the proliferation and colony formation ability of AML1-ETO-positive Kasumi-1 cells. Intriguingly, bioinformatic analysis revealed that the glycolysis pathway is down-regulated in F-CircAE-knockdown Kasumi-1 cells and up-regulated in F-CircAE over-expressed NIH3T3 cells. Further studies show that F-CircAE binds to the glycolytic protein ENO-1, up-regulates the expression level of glycolytic enzymes, and enhances lactate production. In summary, our study demonstrates that F-CircAE may exert biological activities on the growth of AML1-ETO leukemia cells by regulating the glycolysis pathway. Determining the role of F-CircAEs in AML1-ETO leukemia can lead to great strides in understanding its pathogenesis, thus providing new diagnostic markers and therapeutic targets. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Myeloid Leukaemia 2.0)
Show Figures

Figure 1

18 pages, 793 KB  
Review
Non-Coding RNAs Are Implicit in Chronic Myeloid Leukemia Therapy Resistance
by Alexander Rudich, Ramiro Garzon and Adrienne Dorrance
Int. J. Mol. Sci. 2022, 23(20), 12271; https://doi.org/10.3390/ijms232012271 - 14 Oct 2022
Cited by 12 | Viewed by 3395
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm initiated by the presence of the fusion gene BCR::ABL1. The development of tyrosine kinase inhibitors (TKIs) highly specific to p210BCR-ABL1, the constitutively active tyrosine kinase encoded by BCR::ABL1, has [...] Read more.
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm initiated by the presence of the fusion gene BCR::ABL1. The development of tyrosine kinase inhibitors (TKIs) highly specific to p210BCR-ABL1, the constitutively active tyrosine kinase encoded by BCR::ABL1, has greatly improved the prognosis for CML patients. Now, the survival rate of CML nearly parallels that of age matched controls. However, therapy resistance remains a persistent problem in the pursuit of a cure. TKI resistance can be attributed to both BCR::ABL1 dependent and independent mechanisms. Recently, the role of non-coding RNAs (ncRNAs) has been increasingly explored due to their frequent dysregulation in a variety of malignancies. Specifically, microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) have been shown to contribute to the development and progression of therapy resistance in CML. Since each ncRNA exhibits multiple functions and is capable of controlling gene expression, they exert their effect on CML resistance through a diverse set of mechanisms and pathways. In most cases ncRNAs with tumor suppressing functions are silenced in CML, while those with oncogenic properties are overexpressed. Here, we discuss the relevance of many aberrantly expressed ncRNAs and their effect on therapy resistance in CML. Full article
(This article belongs to the Special Issue Stem Cell Biology of Myeloid Neoplasms 2.0)
Show Figures

Figure 1

41 pages, 1598 KB  
Review
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells
by Jen-Yang Tang, Ya-Ting Chuang, Jun-Ping Shiau, Kun-Han Yang, Fang-Rong Chang, Ming-Feng Hou, Ammad Ahmad Farooqi and Hsueh-Wei Chang
Cells 2022, 11(19), 2940; https://doi.org/10.3390/cells11192940 - 20 Sep 2022
Cited by 12 | Viewed by 4795
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the [...] Read more.
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions. Full article
(This article belongs to the Special Issue Regulatory Roles of Non-coding RNAs in Cancer)
Show Figures

Figure 1

24 pages, 3610 KB  
Article
Circ-LocNet: A Computational Framework for Circular RNA Sub-Cellular Localization Prediction
by Muhammad Nabeel Asim, Muhammad Ali Ibrahim, Muhammad Imran Malik, Andreas Dengel and Sheraz Ahmed
Int. J. Mol. Sci. 2022, 23(15), 8221; https://doi.org/10.3390/ijms23158221 - 26 Jul 2022
Cited by 14 | Viewed by 4109
Abstract
Circular ribonucleic acids (circRNAs) are novel non-coding RNAs that emanate from alternative splicing of precursor mRNA in reversed order across exons. Despite the abundant presence of circRNAs in human genes and their involvement in diverse physiological processes, the functionality of most circRNAs remains [...] Read more.
Circular ribonucleic acids (circRNAs) are novel non-coding RNAs that emanate from alternative splicing of precursor mRNA in reversed order across exons. Despite the abundant presence of circRNAs in human genes and their involvement in diverse physiological processes, the functionality of most circRNAs remains a mystery. Like other non-coding RNAs, sub-cellular localization knowledge of circRNAs has the aptitude to demystify the influence of circRNAs on protein synthesis, degradation, destination, their association with different diseases, and potential for drug development. To date, wet experimental approaches are being used to detect sub-cellular locations of circular RNAs. These approaches help to elucidate the role of circRNAs as protein scaffolds, RNA-binding protein (RBP) sponges, micro-RNA (miRNA) sponges, parental gene expression modifiers, alternative splicing regulators, and transcription regulators. To complement wet-lab experiments, considering the progress made by machine learning approaches for the determination of sub-cellular localization of other non-coding RNAs, the paper in hand develops a computational framework, Circ-LocNet, to precisely detect circRNA sub-cellular localization. Circ-LocNet performs comprehensive extrinsic evaluation of 7 residue frequency-based, residue order and frequency-based, and physio-chemical property-based sequence descriptors using the five most widely used machine learning classifiers. Further, it explores the performance impact of K-order sequence descriptor fusion where it ensembles similar as well dissimilar genres of statistical representation learning approaches to reap the combined benefits. Considering the diversity of statistical representation learning schemes, it assesses the performance of second-order, third-order, and going all the way up to seventh-order sequence descriptor fusion. A comprehensive empirical evaluation of Circ-LocNet over a newly developed benchmark dataset using different settings reveals that standalone residue frequency-based sequence descriptors and tree-based classifiers are more suitable to predict sub-cellular localization of circular RNAs. Further, K-order heterogeneous sequence descriptors fusion in combination with tree-based classifiers most accurately predict sub-cellular localization of circular RNAs. We anticipate this study will act as a rich baseline and push the development of robust computational methodologies for the accurate sub-cellular localization determination of novel circRNAs. Full article
(This article belongs to the Special Issue Molecular Biology of RNA: Recent Progress)
Show Figures

Figure 1

19 pages, 1098 KB  
Review
Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens
by Hongmei Shi, Yang He, Xuzhen Li, Yanli Du, Jinbo Zhao and Changrong Ge
Genes 2022, 13(6), 1033; https://doi.org/10.3390/genes13061033 - 9 Jun 2022
Cited by 29 | Viewed by 4469
Abstract
Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and [...] Read more.
Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and quality. In domestic chickens, skeletal muscle growth is regulated by a complex network of molecules that includes some non-coding RNAs (ncRNAs). As a regulator of muscle growth and development, ncRNAs play a significant function in the development of skeletal muscle in domestic chickens. Recent advances in sequencing technology have contributed to the identification and characterization of more ncRNAs (mainly microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (CircRNAs)) involved in the development of domestic chicken skeletal muscle, where they are widely involved in proliferation, differentiation, fusion, and apoptosis of myoblasts and satellite cells, and the specification of muscle fiber type. In this review, we summarize the ncRNAs involved in the skeletal muscle growth and development of domestic chickens and discuss the potential limitations and challenges. It will provide a theoretical foundation for future comprehensive studies on ncRNA participation in the regulation of skeletal muscle growth and development in domestic chickens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1218 KB  
Review
Insights into the Evolving Roles of Circular RNAs in Cancer
by Katherine Louise Harper, Timothy James Mottram and Adrian Whitehouse
Cancers 2021, 13(16), 4180; https://doi.org/10.3390/cancers13164180 - 20 Aug 2021
Cited by 22 | Viewed by 3233
Abstract
The majority of RNAs transcribed from the human genome have no coding capacity and are termed non-coding RNAs (ncRNAs). It is now widely accepted that ncRNAs play key roles in cell regulation and disease. Circular RNAs (circRNAs) are a form of ncRNA, characterised [...] Read more.
The majority of RNAs transcribed from the human genome have no coding capacity and are termed non-coding RNAs (ncRNAs). It is now widely accepted that ncRNAs play key roles in cell regulation and disease. Circular RNAs (circRNAs) are a form of ncRNA, characterised by a closed loop structure with roles as competing endogenous RNAs (ceRNAs), protein interactors and transcriptional regulators. Functioning as key cellular regulators, dysregulated circRNAs have a significant impact on disease progression, particularly in cancer. Evidence is emerging of specific circRNAs having oncogenic or tumour suppressive properties. The multifaceted nature of circRNA function may additionally have merit as a novel therapeutic target, either in treatment or as a novel biomarker, due to their cell-and disease-state specific expression and long-term stability. This review aims to summarise current findings on how circRNAs are dysregulated in cancer, the effects this has on disease progression, and how circRNAs may be targeted or utilised as future potential therapeutic options. Full article
(This article belongs to the Special Issue Circular RNAs: New Insights into the Molecular Biology of Cancer)
Show Figures

Figure 1

Back to TopTop