Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = fully green food packaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11107 KiB  
Article
Incorporation of Nanostructural Hydroxyapatite and Curcumin Extract from Curcuma longa L. Rhizome into Polylactide to Obtain Green Composite
by Magdalena Osial, Sławomir Wilczewski, Urszula Godlewska, Katarzyna Skórczewska, Jakub Hilus, Joanna Szulc, Agata Roszkiewicz, Agnieszka Dąbrowska, Zahra Moazzami Goudarzi, Krzysztof Lewandowski, Tomasz P. Wypych, Phuong Thu Nguyen, Grzegorz Sumara and Michael Giersig
Polymers 2024, 16(15), 2169; https://doi.org/10.3390/polym16152169 - 30 Jul 2024
Cited by 1 | Viewed by 1741
Abstract
This study showed that a polylactide (PLA)-based composite filled with nanostructured hydroxyapatite (HAp) and a natural extract from the rhizome of Curcuma longa L. could provide an alternative to commonly used fossil-based plasticsfor food packaging. The incorporation of HAp into the PLA matrix [...] Read more.
This study showed that a polylactide (PLA)-based composite filled with nanostructured hydroxyapatite (HAp) and a natural extract from the rhizome of Curcuma longa L. could provide an alternative to commonly used fossil-based plasticsfor food packaging. The incorporation of HAp into the PLA matrix had a positive effect on improving selected properties of the composites; the beneficial effect could be enhanced by introducing a green modifier in the form of an extract. Prior to the fabrication of the composite, the filler was characterized in terms of morphology and composition, and the composite was then fully characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman and Fourier transform infrared spectroscopy (FT-IR), and the mechanical, thermal, thermomechanical, and optical properties were investigated. The proposed material exhibits antioxidant properties against DPPH radicals and antibacterial performance against Escherichia coli (E. coli). The results showed that the nanocomposite has the highest antioxidant and antibacterial properties for 10 wt% HAp with an average diameter of rod-shaped structures below 100 nm. In addition, the introduction of turmeric extract had a positive effect on the tensile strength of the nanocomposites containing 1 and 5% HAp. As the resulting material adsorbs light in a specific wavelength range, it can be used in the medical sector, food-packaging, or coatings. Full article
Show Figures

Figure 1

29 pages, 5124 KiB  
Review
Green Processing of Neat Poly(lactic acid) Using Carbon Dioxide under Elevated Pressure for Preparation of Advanced Materials: A Review (2012–2022)
by Stoja Milovanovic, Ivana Lukic, Gabrijela Horvat, Zoran Novak, Sulamith Frerich, Marcus Petermann and Carlos A. García-González
Polymers 2023, 15(4), 860; https://doi.org/10.3390/polym15040860 - 9 Feb 2023
Cited by 13 | Viewed by 4387
Abstract
This review provides a concise overview of up-to-date developments in the processing of neat poly(lactic acid) (PLA), improvement in its properties, and preparation of advanced materials using a green medium (CO2 under elevated pressure). Pressurized CO2 in the dense and supercritical [...] Read more.
This review provides a concise overview of up-to-date developments in the processing of neat poly(lactic acid) (PLA), improvement in its properties, and preparation of advanced materials using a green medium (CO2 under elevated pressure). Pressurized CO2 in the dense and supercritical state is a superior alternative medium to organic solvents, as it is easily available, fully recyclable, has easily tunable properties, and can be completely removed from the final material without post-processing steps. This review summarizes the state of the art on PLA drying, impregnation, foaming, and particle generation by the employment of dense and supercritical CO2 for the development of new materials. An analysis of the effect of processing methods on the final material properties was focused on neat PLA and PLA with an addition of natural bioactive components. It was demonstrated that CO2-assisted processes enable the control of PLA properties, reduce operating times, and require less energy compared to conventional ones. The described environmentally friendly processing techniques and the versatility of PLA were employed for the preparation of foams, aerogels, scaffolds, microparticles, and nanoparticles, as well as bioactive materials. These PLA-based materials can find application in tissue engineering, drug delivery, active food packaging, compostable packaging, wastewater treatment, or thermal insulation, among others. Full article
(This article belongs to the Special Issue Functionalization of Polymers with Natural Bioactive Compounds)
Show Figures

Graphical abstract

12 pages, 1403 KiB  
Article
Preparation of Methylcellulose Film-Based CO2 Indicator for Monitoring the Ripeness Quality of Mango Fruit cv. Nam Dok Mai Si Thong
by Duangjai Noiwan, Panuwat Suppakul and Pornchai Rachtanapun
Polymers 2022, 14(17), 3616; https://doi.org/10.3390/polym14173616 - 1 Sep 2022
Cited by 8 | Viewed by 3375
Abstract
Day-to-day advancements in food science and technology have increased. Indicators, especially biopolymer-incorporated organic dye indicators, are useful for monitoring the ripeness quality of agricultural fruit products. In this investigation, methylcellulose films—containing pH dye-based indicators that change color depending on the carbon dioxide (CO [...] Read more.
Day-to-day advancements in food science and technology have increased. Indicators, especially biopolymer-incorporated organic dye indicators, are useful for monitoring the ripeness quality of agricultural fruit products. In this investigation, methylcellulose films—containing pH dye-based indicators that change color depending on the carbon dioxide (CO2) levels—were prepared. The level of CO2 on the inside of the packaging container indicated the ripeness of the fruit. Changes in the CO2 level, caused by the ripeness metabolite during storage, altered the pH. The methylcellulose-based film contained pH-sensitive dyes (bromothymol blue and methyl red), which responded (through visible color change) to CO2 levels produced by ripeness metabolites formed during respiration. The indicator solution and indicator label were monitored for their response to CO2. In addition, a kinetic approach was used to correlate the response of the indicator label to the changes in mango ripeness. Color changes (the total color difference of a mixed pH dye-based indicator), correlated well with the CO2 levels in mango fruit. In the ‘Nam Dok Mai Si Thong’ mango fruit model, the indicator response correlated with respiration patterns in real-time monitoring of ripeness at various constant temperatures. Based on the storage test, the indicator labels exhibited color changes from blue, through light bright green, to yellow, when exposed to CO2 during storage time, confirming the minimal, half-ripe, and fully-ripe levels of mango fruit, respectively. The firmness and titratable acidity (TA) of the fruit decreased from 44.54 to 2.01 N, and 2.84 to 0.21%, respectively, whereas the soluble solid contents (SSC) increased from 10.70 to 18.26% when the fruit ripened. Overall, we believe that the application of prepared methylcellulose-based CO2 indicator film can be helpful in monitoring the ripeness stage, or quality of, mango and other fruits, with the naked eye, in the food packaging system. Full article
Show Figures

Figure 1

15 pages, 1627 KiB  
Review
Plant-Origin Feedstock Applications in Fully Green Food Packaging: The Potential for Tree-Free Paper and Plant-Origin Bio-Plastics in the Baltic Sea Region
by Zita Markevičiūtė and Visvaldas Varžinskas
Sustainability 2022, 14(12), 7393; https://doi.org/10.3390/su14127393 - 16 Jun 2022
Cited by 12 | Viewed by 4041
Abstract
Paper and plastic are the main materials used in food packaging. In the context of climate change, the importance of tree conservation and the mitigation of the negative environmental impacts caused by fossil consumption and deforestation is greater than ever before. This article [...] Read more.
Paper and plastic are the main materials used in food packaging. In the context of climate change, the importance of tree conservation and the mitigation of the negative environmental impacts caused by fossil consumption and deforestation is greater than ever before. This article reviews the potential of plant-origin feedstock from the Baltic Sea region for use in non-wood-fibre and bio-origin plastic food packaging production. It also presents a systematised literature review of the environmental impacts and applications of tree-free paper, plant-origin plastics, and natural-fibre-reinforced bio-composites in fully green food packaging. The results reveal that beneficial environmental impacts are achieved if waste or by-products are used as feedstock. While the production volumes of alternative materials in Europe are small (0.25% of paper is made of materials other than wood, and the share of bio-plastic is 0.9%), we found a large demand and potential for growth. The biggest volumes of natural fibre feedstock in Baltic Sea region countries are generated from wheat. Wheat straw, which is a by-product, has a production volume of 68.71 million tons and is potentially a significant non-wood-paper food packaging source. Agricultural waste generated from sugar beet, maize, potato, and wheat is an environmentally beneficial by-product that could be used for bio-plastic food packaging production. Full article
Show Figures

Figure 1

13 pages, 1456 KiB  
Article
Development of Poly(L-Lactic Acid)/Chitosan/Basil Oil Active Packaging Films via a Melt-Extrusion Process Using Novel Chitosan/Basil Oil Blends
by Constantinos E. Salmas, Aris E. Giannakas, Maria Baikousi, Areti Leontiou, Zoe Siasou and Michael A. Karakassides
Processes 2021, 9(1), 88; https://doi.org/10.3390/pr9010088 - 3 Jan 2021
Cited by 23 | Viewed by 4015
Abstract
Following the global trend toward a cyclic economy, the development of a fully biodegradable active packaging film is the target of this work. An innovative process to improve the mechanical, antioxidant, and barrier properties of Poly(L-Lactic Acid)/Chitosan films is presented using essential basil [...] Read more.
Following the global trend toward a cyclic economy, the development of a fully biodegradable active packaging film is the target of this work. An innovative process to improve the mechanical, antioxidant, and barrier properties of Poly(L-Lactic Acid)/Chitosan films is presented using essential basil oil extract. A Chitosan/Basil oil blend was prepared via a green evaporation/adsorption method as a precursor for the development of the Poly(L-Lactic Acid)/Chitosan/Basil Oil active packaging film. This Chitosan/Basil Oil blend was incorporated directly in the Poly(L-Lactic Acid) matrix with various concentrations. Modification of the chitosan with the Basil Oil improves the blending with the Poly(L-Lactic Acid) matrix via a melt-extrusion process. The obtained Poly(L-Lactic Acid)/Chitosan/Basil Oil composite films exhibited advanced food packaging properties compared to those of the Poly(L-Lactic Acid)/Chitosan films without Basil Oil addition. The films with 5%wt and 10%wt Chitosan/Basil Oil loadings exhibited better thermal, mechanical, and barrier behavior and significant antioxidant activity. Thus, PLLA/CS/BO5 and PLLA/CS/BO10 are the most promising films to potentially be used for active packaging applications. Full article
Show Figures

Figure 1

Back to TopTop