Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = full-active flapping foil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8947 KiB  
Article
Angle of Attack Characteristics of Full-Active and Semi-Active Flapping Foil Propulsors
by Lei Mei, Wenhui Yan, Junwei Zhou, Yongqi Tang and Weichao Shi
Water 2024, 16(20), 2957; https://doi.org/10.3390/w16202957 - 17 Oct 2024
Viewed by 1008
Abstract
As a propulsor with a good application prospect, the flapping foil has been a hot research topic in the past decade. Although the research results of flapping foils have been very abundant, the performance-influencing mechanism of flapping foils is still not perfect, and [...] Read more.
As a propulsor with a good application prospect, the flapping foil has been a hot research topic in the past decade. Although the research results of flapping foils have been very abundant, the performance-influencing mechanism of flapping foils is still not perfect, and the research considering three-dimensional (3D) effects for engineering applications is still very limited. Based on the above considerations, a systematic and parametric analysis of a small aspect ratio flapping foil is conducted to correlate the influencing factors including angle of attack (AoA) characteristics and wake vortex on the propulsive efficiency. Three-dimensional numerical analyses of full-active and semi-active flapping foils are carried out in this paper, in which the former focuses on different heave amplitudes and pitch amplitudes, and the latter concentrates on different spring stiffnesses. The analysis covers the full range of advance coefficient, which starts around 0 and ends at a thrust drop of 0. Firstly, the influence of the maximum AoA (αmax) on the efficiency and thrust coefficient of these two kinds of flapping foils is analyzed. The results show that for the small aspect ratio flapping foil in this paper, regardless of the full-active or semi-active form, the peak efficiency as high as 75% for both generally appears around αmax = 0.2 rad, while the peak thrust coefficient of 0.5 occurs near αmax = 0.3 rad. Then, by analyzing the wake flow field, it is found that the lower efficiency of larger αmax working points is mainly due to the larger vortex dissipation loss, while the lower efficiency of smaller αmax working points is mainly due to the larger friction loss of the foil surface. Furthermore, the plumpness of different AoA curves is compared and analyzed. It was found that, unlike the results of full-active flapping foils, the shape of the AoA curve of semi-active flapping foils with different spring stiffnesses is similar, and the relationship with efficiency is not strictly corresponding. This study is expected to provide guidance on both academics and industries in relevant fields. Full article
(This article belongs to the Special Issue CFD in Fluid Machinery Design and Optimization)
Show Figures

Figure 1

24 pages, 11890 KiB  
Article
Numerical and Experimental Investigation of the Performance of Dynamic Wing for Augmenting Ship Propulsion in Head and Quartering Seas
by Kostas Belibassakis, Evangelos Filippas and George Papadakis
J. Mar. Sci. Eng. 2022, 10(1), 24; https://doi.org/10.3390/jmse10010024 - 27 Dec 2021
Cited by 25 | Viewed by 3754
Abstract
Flapping-foil thrusters arranged at the bow of the ship are examined for the exploitation of energy from wave motions by direct conversion to useful propulsive power, offering at the same time dynamic stability and reduction of added wave resistance. In the present work, [...] Read more.
Flapping-foil thrusters arranged at the bow of the ship are examined for the exploitation of energy from wave motions by direct conversion to useful propulsive power, offering at the same time dynamic stability and reduction of added wave resistance. In the present work, the system consisting of the ship and an actively controlled wing located in front of its bow is examined in irregular waves. Frequency-domain seakeeping analysis is used for the estimation of ship-foil responses and compared against experimental measurements of a ferry model in head waves tested at the National Technical University of Athens (NTUA) towing tank. Next, to exploit the information concerning the responses from the verified seakeeping model, a detailed time-domain analysis of the loads acting on the foil, both in head and quartering seas, is presented, as obtained by means of a cost-effective time-domain boundary element method (BEM) solver validated by a higher fidelity RANSE finite volume solver. The results demonstrate the good performance of the examined system and will further support the development of the system at a larger model scale and the optimal design at full scale for specific ship types. Full article
(This article belongs to the Special Issue Energy Saving Devices for Ships)
Show Figures

Figure 1

18 pages, 5264 KiB  
Article
Propulsion Performance of the Full-Active Flapping Foil in Time-Varying Freestream
by Zhanfeng Qi, Lishuang Jia, Yufeng Qin, Jian Shi and Jingsheng Zhai
Appl. Sci. 2020, 10(18), 6226; https://doi.org/10.3390/app10186226 - 8 Sep 2020
Cited by 9 | Viewed by 2320
Abstract
A numerical investigation of the propulsion performance and hydrodynamic characters of the full-active flapping foil under time-varying freestream is conducted. The finite volume method is used to calculate the unsteady Reynolds averaged Navier–Stokes by commercial Computational Fluid Dynamics (CFD) software Fluent. A mesh [...] Read more.
A numerical investigation of the propulsion performance and hydrodynamic characters of the full-active flapping foil under time-varying freestream is conducted. The finite volume method is used to calculate the unsteady Reynolds averaged Navier–Stokes by commercial Computational Fluid Dynamics (CFD) software Fluent. A mesh of two-dimensional (2D) NACA0012 foil with the Reynolds number Re = 42,000 is used in all simulations. We first investigate the propulsion performance of the flapping foil in the parameter space of reduced frequency and pitching amplitude at a uniform flow velocity. We define the time-varying freestream as a superposition of steady flow and sinusoidal pulsating flow. Then, we study the influence of time-varying flow velocity on the propulsion performance of flapping foil and note that the influence of the time-varying flow is time dependent. For one period, we find that the oscillating amplitude and the oscillating frequency coefficient of the time-varying flow have a significant influence on the propulsion performance of the flapping foil. The influence of the time-varying flow is related to the motion parameters (reduced frequency and pitching amplitude) of the flapping foil. The larger the motion parameters, the more significant the impact of propulsion performance of the flapping foil. For multiple periods, we note that the time-varying freestream has little effect on the propulsion performance of the full-active flapping foil at different pitching amplitudes and reduced frequency. In summary, we conclude that the time-varying incoming flow has little effect on the flapping propulsion performance for multiple periods. We can simplify the time-varying flow to a steady flow field to a certain extent for numerical simulation. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

Back to TopTop