Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = frozen sandstone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5651 KB  
Article
Creep Tests and Fractional Creep Damage Model of Saturated Frozen Sandstone
by Yao Wei and Hui Peng
Water 2025, 17(16), 2492; https://doi.org/10.3390/w17162492 - 21 Aug 2025
Cited by 2 | Viewed by 1044
Abstract
The rock strata traversed by frozen shafts in coal mines located in western regions are predominantly composed of weakly cemented, water-rich sandstones of the Cretaceous system. Investigating the rheological damage behavior of saturated sandstone under frozen conditions is essential for evaluating the safety [...] Read more.
The rock strata traversed by frozen shafts in coal mines located in western regions are predominantly composed of weakly cemented, water-rich sandstones of the Cretaceous system. Investigating the rheological damage behavior of saturated sandstone under frozen conditions is essential for evaluating the safety and stability of these frozen shafts. To explore the damage evolution and creep characteristics of Cretaceous sandstone under the coupled influence of low temperature and in situ stress, a series of triaxial creep tests were conducted at a constant temperature of −10 °C, under varying confining pressures (0, 2, 4, and 6 MPa). Simultaneously, acoustic emission (AE) energy monitoring was employed to characterize the damage behavior of saturated frozen sandstone under stepwise loading conditions. Based on the experimental findings, a fractional-order creep constitutive model incorporating damage evolution was developed to capture the time-dependent deformation behavior. The sensitivity of model parameters to temperature and confining pressure was also analyzed. The main findings are as follows: (1) Creep deformation progressively increases with higher confining pressure, and nonlinear accelerated creep is observed during the final loading stage. (2) A fractional-order nonlinear creep model accounting for the coupled effects of low temperature, stress, and damage was successfully established based on the test data. (3) Model parameters were identified using the least squares fitting method across different temperature and pressure conditions. The predicted curves closely match the experimental results, validating the accuracy and applicability of the proposed model. These findings provide a theoretical foundation for understanding deformation mechanisms and ensuring the structural integrity of frozen shafts in Cretaceous sandstone formations of western coal mines. Full article
Show Figures

Figure 1

22 pages, 33783 KB  
Article
Mechanical Response and Damage Characteristics of Frozen–Thawed Sandstone Across Various Temperature Ranges Under Impact Loads
by Dejun Liu, Hai Pu, Kangsheng Xue, Junce Xu and Hongyang Ni
Fractal Fract. 2025, 9(2), 128; https://doi.org/10.3390/fractalfract9020128 - 19 Feb 2025
Cited by 5 | Viewed by 1368
Abstract
Freeze–thaw action is a key factor in the deterioration of the dynamic mechanical behavior of rocks in cold regions. This study used yellow sandstone, which is prevalent in the seasonally cold region of Xinjiang, China. The yellow sandstone samples were subjected to various [...] Read more.
Freeze–thaw action is a key factor in the deterioration of the dynamic mechanical behavior of rocks in cold regions. This study used yellow sandstone, which is prevalent in the seasonally cold region of Xinjiang, China. The yellow sandstone samples were subjected to various temperatures and a range of freeze–thaw cycles. Impact mechanical tests were performed using a Split Hopkinson Pressure Bar (SHPB) system on the treated samples. The effects of freezing temperature and changes in impact load on the mechanical properties of frozen–thawed sandstone were examined. Additionally, the damage fractal characteristics of the sandstone were analyzed using fractal theory. The results indicate that as the freezing temperature decreases, the stress–strain curves of frozen–thawed specimens exhibit a clear initial compaction stage. The dynamic strength of the specimens decreases with lower freezing temperatures and shows a logarithmic relationship with the loading strain rate; however, the dynamic deformation modulus exhibits no significant correlation with the strain rate. The fractal dimension is positively correlated with the strain rate, indicating that lower freezing temperatures correspond to a higher rate of increase in the fractal dimension. These findings offer valuable insights into the damage deterioration characteristics of frozen–thawed rocks under varying temperature conditions. Full article
Show Figures

Figure 1

19 pages, 2468 KB  
Article
Mechanical Properties and Damage Constitutive Model of Saturated Sandstone Under Freeze–Thaw Action
by Meimei Feng, Xiaoxiao Cao, Taifeng Wu and Kangsheng Yuan
Materials 2024, 17(23), 5905; https://doi.org/10.3390/ma17235905 - 2 Dec 2024
Viewed by 1754
Abstract
In order to investigate the impact of freeze–thaw damage on sandstone under the coupling of ground stress and pore water pressure, three types of porous sandstone were subjected to freezing at different negative temperatures (−5 °C, −10 °C, −15 °C, and −20 °C). [...] Read more.
In order to investigate the impact of freeze–thaw damage on sandstone under the coupling of ground stress and pore water pressure, three types of porous sandstone were subjected to freezing at different negative temperatures (−5 °C, −10 °C, −15 °C, and −20 °C). Subsequently, hydraulic coupling triaxial compression tests were conducted on the frozen and thawed sandstone. We analyzed the effects of porosity and freezing temperature on the mechanical properties of sandstone under hydraulic coupling and performed nuclear magnetic resonance tests on sandstone samples before and after freezing and thawing. The evolution of the pore structure in sandstone at various freezing and thawing stages was studied, and a statistical damage constitutive model was established to validate the test results. The results indicate that the stress–strain curves of sandstone samples under triaxial compression after a freeze–thaw cycle exhibit minimal changes compared to those without freezing at normal temperature. The peak deviator stress shows a decreasing trend with decreasing freezing temperature, particularly between −5 °C and −10 °C, and then gradually stabilizes. The elastic modulus of sandstone with different porosity decreases with the decrease in freezing temperature, and the decrease is more obvious in the range of −5 °C~−10 °C, decreasing by 2.33%, 6.11%, and 10.5%, respectively. Below −10 °C, the elastic modulus becomes similar to that at −10 °C, and the change tends to stabilize. The nuclear magnetic porosity of sandstone samples significantly increases after freezing and thawing. The smaller the initial porosity, the greater the rate of change in nuclear magnetic porosity after a freeze–thaw cycle. The effects of freeze–thaw damage on the T2 distribution of sandstone with different porosity levels vary. We established a statistical damage constitutive model considering the combined effects of freeze–thaw damage, ground stress, and pore water pressure. The compaction coefficient K was introduced into the constitutive model for optimization. The change trend of the theoretical curve closely aligns with that of the test curve, better characterizing the stress–strain relationship of sandstone under complex pressure environments. The research findings can provide a scientific basis for wellbore wall design and subsequent maintenance in complex environments. Full article
Show Figures

Figure 1

19 pages, 13586 KB  
Article
Monitoring of the Icing Process and Simulation of Its Formation Mechanism in the Cut Slope of Beihei Highway
by Wei Shan, Peijie Hou, Guangchao Xu, Helong Du, Ying Guo and Chengcheng Zhang
Water 2024, 16(13), 1851; https://doi.org/10.3390/w16131851 - 28 Jun 2024
Cited by 1 | Viewed by 1646
Abstract
Icing in cut slopes is a serious risk to transportation safety in cold regions. Research on the occurrence process and mechanism of icing is a prerequisite for proposing effective management measures. We took the cut slopes of the K162 section of the Beihei [...] Read more.
Icing in cut slopes is a serious risk to transportation safety in cold regions. Research on the occurrence process and mechanism of icing is a prerequisite for proposing effective management measures. We took the cut slopes of the K162 section of the Beihei Highway as the research object. We used a combination of field investigation, geological exploration, monitoring, and simulation to study and analyze the power source, occurrence process, and triggering mechanism of icing in cut slopes. The results show that the geologic type of this cut slope is a mudstone–sandstone interaction stratum. Abundant shallow groundwater is the source of water for icing. The excavation of cut slopes extends the effect of negative temperatures on groundwater flow during the winter period. The process of ice formation in cut slopes can be described as follows: As the environmental temperature drops, the surface soil begins to freeze, resulting in a gradual narrowing of the water channel; then, the groundwater flow is blocked, so that the internal pressure begins to rise. When the internal pressure of the pressurized groundwater exceeds the strength of the frozen soil, groundwater overflows from the sandstone layer to the surface, forming icing. The high pore water pressure inside the cut slope is the precursor for the occurrence of icing. The dynamic pressure of the pore water pressure is the main driving force for the formation of icing in cut slopes. The obstruction of the water channel due to ground freezing is the triggering condition for ice formation in cut slopes. Full article
Show Figures

Figure 1

15 pages, 5683 KB  
Article
Variability in Mechanical Properties and Cracking Behavior of Frozen Sandstone Containing En Echelon Flaws under Compression
by Weimin Liu, Li Han, Di Wu, Hailiang Jia and Liyun Tang
Appl. Sci. 2024, 14(8), 3427; https://doi.org/10.3390/app14083427 - 18 Apr 2024
Cited by 2 | Viewed by 1313
Abstract
The mechanical properties of frozen fissured rock masses are crucial considerations for engineering in frozen earth. However, there has been little research on the mechanical properties of frozen fissured sandstone, including its strength, deformation, and geometric parameters. In this study, sandstone samples with [...] Read more.
The mechanical properties of frozen fissured rock masses are crucial considerations for engineering in frozen earth. However, there has been little research on the mechanical properties of frozen fissured sandstone, including its strength, deformation, and geometric parameters. In this study, sandstone samples with three open en echelon fissures were observed using high-speed photography and acoustic emissions during uniaxial compression tests. The aim was to investigate sandstone’s strength, deformability, and failure process in order to elucidate the effects of freezing on its mechanical properties. In the frozen-saturated and dried states, the uniaxial compression strength (UCS) initially decreases and then increases with an increase in fissure inclination angle. Conversely, the UCS of samples in the saturated state continuously increases. The UCS follows a decreasing trend, as follows: frozen-saturated state > dried state > saturated state. The initial crack angle decreases as the fissure inclination increases in all states, irrespective of temperature and moisture conditions. However, the initial crack stress and time show an increasing trend. The uniaxial compression strength (UCS) of frozen fissured sandstone is influenced by four mechanisms: (1) ice provides support to the rock under compression, (2) ice fills microcracks, (3) unfrozen water films act as a cementing agent under tension or shearing loads, and (4) frost damage leads to softening of the rock. Full article
Show Figures

Figure 1

19 pages, 3233 KB  
Article
Study on the Acoustic Emission Characteristics and Failure Precursors of Water-Rich Frozen Sandstone under Different Lateral Unloading Rates
by Shuai Liu, Gengshe Yang, Hui Liu, Xihao Dong and Yanjun Shen
Water 2023, 15(12), 2297; https://doi.org/10.3390/w15122297 - 20 Jun 2023
Cited by 4 | Viewed by 2088
Abstract
The artificial freezing method is used to cross the water-rich soft rock strata in order to exploit deep coal resources. At present, studies that consider both freezing effect and unloading rate are insufficient. To study the influences of the excavation rate using the [...] Read more.
The artificial freezing method is used to cross the water-rich soft rock strata in order to exploit deep coal resources. At present, studies that consider both freezing effect and unloading rate are insufficient. To study the influences of the excavation rate using the artificial freezing method on the unloading deformation and failure of the water-rich surrounding rock, we carry out mechanical and synchronous acoustic emission (AE) tests on frozen (−10 °C) sandstone samples under different lateral unloading rates. Combined with the AE signals, the stress, strain and failure process are analysed to determine the mechanical behaviours of frozen rock samples under different lateral unloading rates. The damage difference between normal temperature rock and frozen rock during lateral unloading is studied. According to acoustic emission signals, the damage relationships among acoustic emission amplitude, energy, cumulative acoustic emission energy (CAEE), stress and strain were compared and analyzed. In this paper, acoustic emission 3D positioning system is used to monitor the fracture propagation trajectory in the process of unloading confining pressure of frozen sandstone. The results show that the peak stress of frozen sandstone during lateral unloading is about 2.5 times of that at 20 °C. More than 2 AE amplitudes per second are regarded as the precursor of failure (FP), and point FP is taken as the first level warning. The CAEE of rock samples at 20 °C and frozen rock samples shows the same change law over time, increasing slowly before the FP point and exponentially after the FP point. Peak stress increases and axial strain decreases with the increase of unloading rate of frozen rock sample. The CAEE at point FP and the peak acoustic emission energy (AEE) and the CAEE at the time of failure increase when the unloading rate of frozen rock sample increases. Principal component analysis method was used to extract key characteristic energy to obtain a clearer AEE concentration area, which was defined as second-level early warning. The research results can provide guidance for freezing shaft construction to reduce the occurrence of disasters. Full article
(This article belongs to the Topic Advances in Well and Borehole Hydraulics and Hydrogeology)
Show Figures

Figure 1

22 pages, 21916 KB  
Article
Evolution Law of Acoustic–Thermal Effect of Freeze–Thaw Sandstone Failure Based on Coupling of Multivariate Monitoring Information
by Hui Liu, Jianxi Ren, Xinyue Dai, Can Mei, Di Wang, Runqi Wang and Minkai Zhu
Sustainability 2023, 15(12), 9611; https://doi.org/10.3390/su15129611 - 15 Jun 2023
Cited by 1 | Viewed by 1631
Abstract
The instability and failure of rock that has been frozen and thawed cause serious rock engineering accidents in cold regions. Exploring the precursor information of freeze–thaw rock failure is of great theoretical value and engineering significance. Real-time uniaxial compression acoustic thermal monitoring experiments [...] Read more.
The instability and failure of rock that has been frozen and thawed cause serious rock engineering accidents in cold regions. Exploring the precursor information of freeze–thaw rock failure is of great theoretical value and engineering significance. Real-time uniaxial compression acoustic thermal monitoring experiments were conducted on freeze–thaw sandstone, and non-contact rock fracture precursor warning indicators were proposed. According to the coupled analysis of acoustic–thermal monitoring information, a precursor information chain for freeze–thaw rocks was established in time and space, and the spatiotemporal evolution of damage and acoustic thermal effects of freeze–thaw sandstone under compressive load was studied. The freeze–thaw cycle enhances the sensitivity of acoustic–thermal precursor information. Significant synchronous changes in ring count often occur during the rapid expansion period of damage, which can provide an essential reference for the occurrence and intensification of damage. The sequence of precursor warning information during the process of freeze–thaw sandstone compression failure is in the order of thermal infrared temperature → acoustic emission ringing count → acoustic emission energy → infrared thermal image. Thermal infrared temperature and acoustic emission precursor information can help in prioritizing early warning of rock damage in terms of time. At the same time, thermal image anomalies can predict potential fracture areas of rocks. Full article
(This article belongs to the Special Issue Sustainable Engineering: Prevention of Rock and Thermal Damage)
Show Figures

Figure 1

19 pages, 9250 KB  
Article
Mechanical Properties and Constitutive Relationship of Cretaceous Frozen Sandstone under Low Temperature
by Siyuan Shu, Zhishu Yao, Yongjie Xu, Chen Wang and Kun Hu
Appl. Sci. 2023, 13(7), 4504; https://doi.org/10.3390/app13074504 - 2 Apr 2023
Cited by 6 | Viewed by 2282
Abstract
During the construction of coal mine shafts through Cretaceous water-rich stratum using the freezing method, the frozen shaft lining can break and lose stability. Hence, it is necessary to examine the mechanical properties and constitutive relationship of Cretaceous water-rich sandstone under the effect [...] Read more.
During the construction of coal mine shafts through Cretaceous water-rich stratum using the freezing method, the frozen shaft lining can break and lose stability. Hence, it is necessary to examine the mechanical properties and constitutive relationship of Cretaceous water-rich sandstone under the effect of surrounding rocks. To this end, in this work, the mechanical properties of red sandstone at different confining pressures and freezing temperatures were examined by using a ZTCR-2000 low-temperature triaxial testing system, wherein the 415–418 m deep red sandstone in the Lijiagou air-return shaft of Wenjiapo Mine was taken as the research object. The test results indicated that the stress–strain curves of rock under triaxial compression and uniaxial compression presented four stages: pore compaction, elastic compression, plastic yield, and post-peak deformation. The difference between the two cases was that the post-peak curve of the former was abrupt, while the latter exhibited a post-peak strain softening section. As the freezing temperature was constant, with the raise in the confining pressure, the elastic modulus and peak strength of the rock rose linearly, while the Poisson’s ratio decreased quadratically. As the control confining pressure was constant, the elastic modulus and rock’s peak strength increased with the decrease in the temperature, and under the condition of negative temperature, the two parameters were linearly correlated with the temperature, while the Poisson’s ratio showed the opposite trend. The two-part Hooke’s model and the statistical damage model based on Drucker–Prager (D-P) yield criterion were used to establish the stress–strain relationship models before and after the rock yield point, optimize the model parameters, and optimize the junction of the two models. The results revealed that the optimized model curve was in good agreement with the experimental curve, which suggests that the proposed model can accurately describe the stress–strain characteristics of rock under three-dimensional stress. This verified the feasibility and rationality of the proposed model for examining the constitutive relationship of rocks. Full article
(This article belongs to the Special Issue Artificial Ground Freezing Technology)
Show Figures

Figure 1

24 pages, 11859 KB  
Article
Influence of Microstructure on Dynamic Mechanical Behavior and Damage Evolution of Frozen–Thawed Sandstone Using Computed Tomography
by Junce Xu, Hai Pu and Ziheng Sha
Materials 2023, 16(1), 119; https://doi.org/10.3390/ma16010119 - 22 Dec 2022
Cited by 9 | Viewed by 2235
Abstract
Frost-induced microstructure degradation of rocks is one of the main reasons for the changes in their dynamic mechanical behavior in cold environments. To this end, computed tomography (CT) was performed to quantify the changes in the microstructure of yellow sandstone after freeze–thaw (F–T) [...] Read more.
Frost-induced microstructure degradation of rocks is one of the main reasons for the changes in their dynamic mechanical behavior in cold environments. To this end, computed tomography (CT) was performed to quantify the changes in the microstructure of yellow sandstone after freeze–thaw (F–T) action. On this basis, the influence of the microscopic parameters on the dynamic mechanical behavior was studied. The results showed that the strain rate enhanced the dynamic mechanical properties, but the F–T-induced decrease in strength and elastic modulus increased with increasing strain rate. After 40 F–T cycles, the dynamic strength of the samples increased by 41% to 75.6 MPa when the strain rate was increased from 75 to 115 s−1, which is 2.5 times the static strength. Moreover, the dynamic strength and elastic modulus of the sample were linearly and negatively correlated with the fractal dimension and porosity, with the largest decrease rate at 115 s−1, indicating that the microscopic parameters have a crucial influence on dynamic mechanical behavior. When the fractal dimension was increased from 2.56 to 2.67, the dynamic peak strength of the samples under the three impact loads decreased by 43.7 MPa (75 s), 61.8 MPa (95 s), and 71.4 MPa (115 s), respectively. In addition, a damage evolution model under F–T and impact loading was developed considering porosity variation. It was found that the damage development in the sample was highly related to the strain rate and F–T damage. As the strain rate increases, the strain required for damage development gradually decreases with a lower increase rate. In contrast, the strain required for damage development in the sample increases with increasing F–T damage. The research results can be a reference for constructing and maintaining rock structures in cold regions. Full article
Show Figures

Figure 1

16 pages, 6806 KB  
Article
Coupling Effects of Strain Rate and Low Temperature on the Dynamic Mechanical Properties of Frozen Water-Saturated Sandstone
by Zhiqiang Yan, Zeng Li, Yizhong Tan, Linjian Ma, Liyuan Yu and Hongya Li
Water 2022, 14(21), 3513; https://doi.org/10.3390/w14213513 - 2 Nov 2022
Cited by 9 | Viewed by 2528
Abstract
The mechanical properties of water-rich rocks in a subzero temperature environment are quite different from those at room temperature, which introduces many unexpected engineering hazards. The dynamic compressive behaviors of frozen water-saturated sandstone are related to strain rate and temperature at different degrees. [...] Read more.
The mechanical properties of water-rich rocks in a subzero temperature environment are quite different from those at room temperature, which introduces many unexpected engineering hazards. The dynamic compressive behaviors of frozen water-saturated sandstone are related to strain rate and temperature at different degrees. In this paper, quasi-static and dynamic tests were conducted on the saturated sandstone utilizing the MTS-816 apparatus and the modified split Hopkinson pressure bar (SHPB) device with a freezing module, which are constrained at a temperature range of −1 °C~−20 °C and a strain rate range of 10−5 s−1~200 s−1. The coupling effect of strain rate and temperature on the mechanical characteristics of saturated sandstone is systematically investigated. It is found that the quasi-static compressive strength of frozen saturated sandstone increases with the applied temperature from −1 °C to −5 °C and decreases with that from −5 °C to −20 °C, while the dynamic compressive strength exhibits an opposite trend. Different from the primary shear failure under quasi-static tests, the failure pattern of the frozen specimens becomes tensile failure under dynamic tests with an evident sensitivity to the applied temperature. Furthermore, the dissipated energy can be positively correlated with strain rate, while the growth rate of dissipated energy decreases with the applied temperature from −1 °C to −5 °C and increases with that from −5 °C to −20 °C. A new water-ice phase transition mechanism was further introduced, which divided the freezing process of water-saturated rock into the intensive stage and the stable water-ice phase transition stage. The underlying mechanism of water-ice phase transition governing the dynamic mechanical behavior of frozen saturated sandstone was also revealed. Full article
(This article belongs to the Special Issue Research on Rock Mechanics under Freeze-Thaw Action)
Show Figures

Figure 1

19 pages, 5493 KB  
Article
Mechanical Properties and Strength Evolution Model of Sandstone Subjected to Freeze–Thaw Weathering Process: Considering the Confining Pressure Effect
by Xin Xiong, Feng Gao, Keping Zhou, Chun Yang and Jielin Li
Mathematics 2022, 10(20), 3841; https://doi.org/10.3390/math10203841 - 17 Oct 2022
Cited by 6 | Viewed by 2161
Abstract
Freeze-and-thaw (F&T) weathering cycles induced by day–night and seasonal temperature changes cause a large number of rock mass engineering disasters in cold areas. Investigating the impact of F&T weathering process on the strength and deformation characteristics of frozen–thawed rocks is therefore of critical [...] Read more.
Freeze-and-thaw (F&T) weathering cycles induced by day–night and seasonal temperature changes cause a large number of rock mass engineering disasters in cold areas. Investigating the impact of F&T weathering process on the strength and deformation characteristics of frozen–thawed rocks is therefore of critical scientific importance for evaluating the stability and optimizing the design of rock mass engineering in these areas. In this research, the evolution characteristics of F&T damage were analyzed based on T2 spectrum distribution curves of sandstone specimens before and after F&T weathering cycles. The coupling impact of the quantity of F&T weathering cycles and confining pressure on pre-peak and post-peak deformation behaviors of sandstone specimens were analyzed in detail. By introducing the confining pressure increase factor (CPIF), the impact of confining pressure on the triaxial compressive strength (TCS) of sandstone specimens after undergoing different quantities of F&T weathering cycles was further investigated. A novel strength evolution model was proposed that could effectively describe the coupling impact of the quantity of F&T weathering cycles and confining pressure on TCS of rocks after undergoing the F&T weathering process. The proposed strength evolution model was cross-verified with experimental data from the published literature and all correlation coefficients were above 0.95, which proved that the strength evolution model proposed in this paper was reasonable; in addition, this model has strong applicability. Full article
(This article belongs to the Special Issue Mathematical Problems in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

20 pages, 23905 KB  
Article
Dynamic Mechanical Behavior of the Frozen Red Sandstone under Coupling of Saturation and Impact Loading
by Junce Xu, Hai Pu and Ziheng Sha
Appl. Sci. 2022, 12(15), 7767; https://doi.org/10.3390/app12157767 - 2 Aug 2022
Cited by 11 | Viewed by 3357
Abstract
Saturation is one of the critical factors causing frost damage to rock masses in alpine regions, and dynamic stress perturbations further complicate the damage process. Therefore, the effects of water content and loadings should be considered in the construction and maintenance of rock [...] Read more.
Saturation is one of the critical factors causing frost damage to rock masses in alpine regions, and dynamic stress perturbations further complicate the damage process. Therefore, the effects of water content and loadings should be considered in the construction and maintenance of rock structures during winter in cold regions. In this study, the effects of saturation and impact loading on the dynamic mechanical behavior of frozen red sandstone were investigated using a low-temperature split Hopkinson pressure bar system (LT-SHPB). By combining low-field nuclear magnetic resonance (LF-NMR) and scanning electron microscopy (SEM), the dynamic evolution of the microstructure of the frozen sandstone due to changes in saturation was investigated. The results indicated that the increase of saturation reshapes the pore structure of the frozen sandstone and promotes the expansion of pores of different sizes during freezing, while at complete saturation the frozen samples are mainly developed with meso- and macropores. The dynamic strength, elastic modulus, and brittleness index of the frozen sandstone under impact loading, which are limited by the critical saturation Src, tend to increase and then decrease with saturation. For the four impact loads, the dynamic strength of the samples increased by 21.2%, 27.1%, 32.5%, and 34.3% when the saturation was increased from 0 to 50%, corresponding to 1.38, 1.43, 1.51, and 1.56 times the dynamic strength of the fully saturated samples, respectively. In contrast, the ultimate deformation capacity of the frozen sandstone showed an opposite trend with saturation. As the impact load increases, the dynamic strength, elastic modulus, and peak strain of the frozen sandstone show a significant strengthening effect due to the increase in strain rate, while its brittleness index gradually decreases, dropping by 11.2% at full saturation. In addition, the energy dissipation capacity of the frozen sample first increases and then decreases with increasing saturation, with the enhancement effect of saturation on energy dissipation smaller than the weakening effect. Full article
Show Figures

Figure 1

20 pages, 5823 KB  
Article
Triaxial Compression Fracture Characteristics and Constitutive Model of Frozen–Thawed Fissured Quasi-Sandstone
by Yi Xie, Jianxi Ren, Tailang Caoxi, Xu Chen and Mengchen Yun
Appl. Sci. 2022, 12(13), 6454; https://doi.org/10.3390/app12136454 - 25 Jun 2022
Cited by 8 | Viewed by 2824
Abstract
The artificial frozen wall crossing the water-rich sand layer is prone to failure during thawing. To study the loading fracture characteristics and damage evolution of single-fissured sandstone after thawing, quasi-sandstones with prefabricated single fissure at different angles were prepared using the sandstone of [...] Read more.
The artificial frozen wall crossing the water-rich sand layer is prone to failure during thawing. To study the loading fracture characteristics and damage evolution of single-fissured sandstone after thawing, quasi-sandstones with prefabricated single fissure at different angles were prepared using the sandstone of the Luohe Formation as the original rock to conduct freeze–thaw tests with various temperature differences, and triaxial compression tests were performed on the samples. Based on the distribution theory of rock micro-element strength and static elastic modulus, a damage constitutive model of single-fissured quasi-sandstone under freezing–thawing and confining pressure was established. The results show that with the decrease in freezing temperature, the amount of flake spalling on the sample surface increases, and the frost-heaving cracks of quasi-sandstone become more numerous and longer, which makes the single-fissured quasi-sandstone tend to have a more complex tensile–shear hybrid failure than a shear failure. Moreover, with the increase in fissure angle, the absolute value of the freezing temperature required to produce frost-heaving cracks increases. An S-shaped damage evolution curve corresponds to each stage of triaxial compression of single-fissured quasi-sandstone. With the decrease in freezing temperature, the strength of rock after thawing decreases, and the brittleness characteristics strengthen. Full article
(This article belongs to the Special Issue Fracture and Failure of Jointed Rock Mass)
Show Figures

Figure 1

16 pages, 6712 KB  
Article
Aging Stability Analysis of Slope Considering Cumulative Effect of Freeze–Thaw Damage—A Case Study
by Zhiguo Chang, Weiguang Zhang, Gang Zhao, Fa Dong and Xinyu Geng
Minerals 2022, 12(5), 598; https://doi.org/10.3390/min12050598 - 9 May 2022
Cited by 7 | Viewed by 2813
Abstract
The change of physical and mechanical properties of slope rock mass in open-pit mines in seasonally frozen area under the action of freeze–thaw cycles is one of the main reasons for slope instability. In this paper, taking the mechanical parameters of coal seam [...] Read more.
The change of physical and mechanical properties of slope rock mass in open-pit mines in seasonally frozen area under the action of freeze–thaw cycles is one of the main reasons for slope instability. In this paper, taking the mechanical parameters of coal seam and sandstone layer in the Beitashan Pasture Open-Pit Mine in Xinjiang as the research object, considering the combined effect of the frost-heave tensile stress in the crack perpendicular to the crack surface and the three-dimensional confining pressure in the crack, the criterion for cracking of fractured rock mass under freeze-thaw condition is determined by applying the principle of stress superposition and the theory of strain energy density factor, and the theoretical frost-heave stress required for cracking is deduced. On this basis, the sensitivity analysis of the fixed factors and variable factors to the theoretical frost-heave stress was performed, respectively. Finite element analysis was utilized to analyze the slope stability under the attenuation of five groups of different rock mass mechanical properties and to determine the slope angle required for the slope stability. Seven different slope angles of sidewall mining ranging from 36° to 51° are analyzed. The results of finite element analysis show that considering the timeliness difference of rock mass parameters with time, the safety factor of slope is reduced from the original 1.70 to 1.18, and 91,500 tons of coal resources can be recovered every year, with remarkable economic benefits. Full article
(This article belongs to the Special Issue Solid-Filling Technology in Coal Mining)
Show Figures

Figure 1

13 pages, 4607 KB  
Article
A Study on the Dynamic Strength Deterioration Mechanism of Frozen Red Sandstone at Low Temperatures
by Yang Yang, Niannian Zhang and Jianguo Wang
Minerals 2021, 11(12), 1300; https://doi.org/10.3390/min11121300 - 23 Nov 2021
Cited by 22 | Viewed by 2918
Abstract
In this study, the dynamic mechanical properties of red sandstone at low temperatures were studied by performing SHPB dynamic impact tests. According to damage and energy theories, the influences of different low temperatures on the dynamic strength, damage variable, and energy dissipation of [...] Read more.
In this study, the dynamic mechanical properties of red sandstone at low temperatures were studied by performing SHPB dynamic impact tests. According to damage and energy theories, the influences of different low temperatures on the dynamic strength, damage variable, and energy dissipation of red sandstone were analyzed. Combined with a fracture morphology analysis, the deterioration mechanism of the dynamic mechanical strength of red sandstone was deduced at lower negative temperatures. The research results showed that lower negative temperatures (<−30 °C) caused “frostbite” in red sandstone, which resulted in a sharp reduction in the macroscopic, dynamic mechanical strength of rock under high strain. Transient engineering disasters can easily occur under such a dynamic disturbance. According to the fracture morphology analysis, low temperatures generated a large number of cracks at the interface between the components of red sandstone. The plastic deformation ability of the crack tip was poor, and stability loss and expansion under high strain rate were readily achieved, resulting in low-stress brittle failure. However, due to the complex mineral composition of the cementitious materials, they were more susceptible to low temperature. Therefore, under the double action of dynamic load and low temperatures, it was found that damage occurred in the cementitious materials first, and then fracture of the red sandstone as a whole resulted. Full article
(This article belongs to the Special Issue Failure Characteristics of Deep Rocks)
Show Figures

Figure 1

Back to TopTop