Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = fresh rice noodles’ quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1819 KB  
Article
Influence of Rice Physicochemical Properties on High-Quality Fresh Wet Rice Noodles: Amylose and Gel Consistency as Key Factors
by Dezhi Zhao, Yuanyuan Deng, Qi Huang, Guang Liu, Yan Zhang, Xiaojun Tang, Pengfei Zhou, Zhihao Zhao, Jiarui Zeng, Ying Liu and Ping Li
Gels 2025, 11(9), 696; https://doi.org/10.3390/gels11090696 - 2 Sep 2025
Viewed by 1148
Abstract
Fresh wet rice noodles (FWRNs) are a popular staple food in southern China. The quality of rice varieties results in the inconsistent quality of FWRNs. However, evaluation of rice adaptability for the production of FWRNs is not comprehensive due to the absence of [...] Read more.
Fresh wet rice noodles (FWRNs) are a popular staple food in southern China. The quality of rice varieties results in the inconsistent quality of FWRNs. However, evaluation of rice adaptability for the production of FWRNs is not comprehensive due to the absence of unified screening standards. In this study, twelve rice varieties in southern China were selected to analyze the correlations between rice’s physicochemical properties and the quality characteristics of FWRNs. Results showed that KIM, GC, and IZG rice exhibited a high chalky grain rate and low gel consistency, while the related starches had a high amylose content, high setback value, and low short-range order. Their noodles achieved high total sensory scores and exhibited high levels of sensory and textural qualities. Correlation analysis revealed that the chalky grain rate, chalkiness degree, protein and fat contents, and amylose content were significantly and positively correlated with the hardness, elasticity, chewiness, and total sensory score of FWRNs. Therefore, based on the structural parameters of KIM and GC rice, amylose content between 26–28% and gel consistency between 33–36 mm would be the key factors for raw rice to make high-quality FWRNs. These results offer theoretical guidance for rice selection in the industrial-scale production of FWRNs. Full article
(This article belongs to the Special Issue State-of-the-Art Food Gels)
Show Figures

Graphical abstract

18 pages, 7147 KB  
Article
Ethanolic Extrusion of Indica Rice Flour for Rice Noodle Production
by Miaomiao Fu, Xing Zhou, Hong (Sabrina) Tian, Yanxin Chen and Zhengyu Jin
Foods 2025, 14(9), 1453; https://doi.org/10.3390/foods14091453 - 23 Apr 2025
Cited by 1 | Viewed by 1293
Abstract
Due to the absence of gluten, rice noodles require complex processing to achieve a desirable texture. This study developed ethanolic-extruded indica rice flour (EERF) as a novel gluten substitute to simplify rice noodle production. EERF exhibited a distinct V-type crystalline structure (7.89% crystallinity) [...] Read more.
Due to the absence of gluten, rice noodles require complex processing to achieve a desirable texture. This study developed ethanolic-extruded indica rice flour (EERF) as a novel gluten substitute to simplify rice noodle production. EERF exhibited a distinct V-type crystalline structure (7.89% crystallinity) and high cold-paste viscosity (1043 cP), enabling its use as a binder in rice dough. When blended with native indica rice flour (IRF) at 10–20%, the EERF-IRF premix formed a cohesive dough with water via cold gelation, imparting viscoelasticity and tensile resistance. Optimal formulation (15% EERF for the premix and 37% water for making the dough) yielded fresh rice noodles with reduced cooking loss (5.57%) and a reduced breakage rate (14.44%), alongside enhanced sensory scores. This approach offers a clean-label, industrially scalable solution for producing rice noodles with simplified processing and improved quality. Full article
Show Figures

Figure 1

24 pages, 4225 KB  
Article
Prediction of the Ecological Behavior of Burkholderia gladiolus in Fresh Wet Rice Noodles at Different Temperatures and Its Correlation with Quality Changes
by Mengmeng Li, Ke Xiong, Wen Jin and Yumeng Hu
Foods 2025, 14(8), 1291; https://doi.org/10.3390/foods14081291 - 8 Apr 2025
Viewed by 1157
Abstract
Burkholderia gladioli pathovar cocovenenans (BGC) is a highly lethal foodborne pathogen responsible for outbreaks of food poisoning with the highest recorded mortality rates among bacterial foodborne illnesses in China. In this study, the ecological behavior of BGC and its Bongkrekic Acid (BA) production [...] Read more.
Burkholderia gladioli pathovar cocovenenans (BGC) is a highly lethal foodborne pathogen responsible for outbreaks of food poisoning with the highest recorded mortality rates among bacterial foodborne illnesses in China. In this study, the ecological behavior of BGC and its Bongkrekic Acid (BA) production dynamics in fresh wet rice noodles (FWRN) were investigated under isothermal conditions ranging from 4 °C to 37 °C. Growth kinetics were modeled using the Huang, Baranyi, and modified Gompertz primary models, with secondary models (Huang square root model and Ratkowsky square root model) describing the influence of temperature on growth parameters. Among these, the Huang–Huang model combination exhibited the best performance, with a root mean square error (RMSE) of 0.009 and bias factor (Bf) and accuracy factor (Af) values close to 1. Additionally, we examined the impact of BGC contamination on the quality attributes of FWRN, including pH, color (L*, a*, b*), hardness, and moisture content. The results indicated that BGC growth significantly increased pH and yellowing (b*) values, while changes in texture and moisture were less pronounced. A probabilistic model was further developed to predict BA production under various temperature scenarios, revealing that BA formation was most likely to occur between 24 °C and 30 °C. While this study provides valuable predictive tools for microbial risk assessment and quality control of FWRN, limitations include the exclusion of additional environmental factors such as oxygen and relative humidity, as well as the lack of direct investigation into the degradation behavior of BA. Future research will expand model parameters and include sensory evaluations and advanced microbiological analyses to enhance applicability under real-world storage and transportation conditions. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

17 pages, 4469 KB  
Article
Curdlan Incorporation Enhances the Cooking, Rheological, and Textural Attributes of Thermally Sterilized Rice Noodles
by Jing Wang, Yongxin Liu, Qingjie Sun, Man Li, Yanfei Wang and Fengwei Xie
Foods 2025, 14(4), 674; https://doi.org/10.3390/foods14040674 - 17 Feb 2025
Cited by 3 | Viewed by 1322
Abstract
Thermal treatment of rice starch, which is the main ingredient in rice noodles and has cooling-set gelling behavior, can disrupt hydrogen bonding, leading to a compromised gel structure. This can lead to a softer texture and reduced textural attributes and cooking characteristics of [...] Read more.
Thermal treatment of rice starch, which is the main ingredient in rice noodles and has cooling-set gelling behavior, can disrupt hydrogen bonding, leading to a compromised gel structure. This can lead to a softer texture and reduced textural attributes and cooking characteristics of rice noodles. This study investigated how thermal sterilization and curdlan integration affect the rheological characteristics, microstructure, and quality of rice noodles. Fourier-transform infrared (FTIR) spectroscopy, kinetic analysis, and scanning electron microscopy (SEM) confirmed that the incorporation of curdlan, a thermally set polysaccharide gel, enhances hydrogen bonding, accelerates gel formation, and yields a denser gel structure to rice noodles. This enhancement improves solid-like behavior, storage modulus, textural properties, and cooking characteristics. Compared to pure rice noodles subjected to thermal sterilization, rice noodles incorporating 2.0% curdlan showed reductions of 74.71% in cooking breakage rate and 68.18% in cooking loss rate. Conversely, hardness and springiness increased by 19.82% and 18.75%, respectively. This study offers valuable insights for developing high-quality fresh rice noodles. Full article
(This article belongs to the Special Issue Natural Polymer-Based Films and Coatings for Food Packaging)
Show Figures

Graphical abstract

14 pages, 3920 KB  
Article
The Selection of Storage Period for Fresh Rice Noodles, Processing Materials, and the Screening of Key Indicators
by Zhe Yang, Peng Liu, Xilin Fang and Guanghui Chen
Foods 2024, 13(23), 3965; https://doi.org/10.3390/foods13233965 - 9 Dec 2024
Viewed by 1779
Abstract
The storage period of paddy is a critical factor affecting rice quality, and it is still unclear how fresh rice noodles, primarily made from paddy, respond to changes in the storage period. To elucidate the relationship between the paddy storage period and the [...] Read more.
The storage period of paddy is a critical factor affecting rice quality, and it is still unclear how fresh rice noodles, primarily made from paddy, respond to changes in the storage period. To elucidate the relationship between the paddy storage period and the quality of fresh rice noodles, this study used fourteen rice varieties as materials and set up three paddy storage periods (six months, nine months, and twelve months). It explored the quality variation patterns of fresh rice noodles processed from these paddies and analyzed the relationship between the two in conjunction with rice quality. The results indicated that fresh rice noodles produced from paddies stored for nine months exhibited superior quality compared to the other two storage periods. Grey relational analysis and correlation analysis confirmed that this was primarily attributed to changes in the gel consistency of the paddy. When the paddy was stored for nine months and the rice gel consistency was approximately 32 mm, the quality of the fresh rice noodles produced was optimal, serving as an important basis for selecting raw materials for fresh rice noodles. Full article
(This article belongs to the Special Issue Advances in the Quality and Marketability Improvement of Cereals)
Show Figures

Figure 1

16 pages, 2080 KB  
Article
Further Interpretation of the Volatile, Microbial Community and Edible Quality of Fresh Fermented Rice Noodles with Different Selected Strains
by Aixia Wang, Songfeng Xie, Zengrun Xia, Fengzhong Wang and Litao Tong
Foods 2023, 12(5), 961; https://doi.org/10.3390/foods12050961 - 24 Feb 2023
Cited by 7 | Viewed by 2627
Abstract
Understanding bacteria and yeasts can reduce unpredictable changes in fresh fermented rice noodles (FFRN). The effects of selected strains (Limosilactobacillus fermentum, Lactoplantibacillus plantarum, Lactococcus lactis and Saccharomyces cerevisiae) on the edible quality, microbial community, and volatile component of FFRN [...] Read more.
Understanding bacteria and yeasts can reduce unpredictable changes in fresh fermented rice noodles (FFRN). The effects of selected strains (Limosilactobacillus fermentum, Lactoplantibacillus plantarum, Lactococcus lactis and Saccharomyces cerevisiae) on the edible quality, microbial community, and volatile component of FFRN were studied. The results indicated that the fermentation time could be shortened to 12 h when Limosilactobacillus fermentum, Lactoplantibacillus plantarum, and Lactococcus lactis were added, whereas it still required approximately 42 h after adding Saccharomyces cerevisiae. Only a steady bacterial composition was provided by adding Limosilactobacillus fermentum, Lactoplantibacillus plantarum, and Lactococcus lactis, and only a steady fungal composition was provided by adding Saccharomyces cerevisiae. Therefore, these microbial results indicated that the selected single strains cannot improve the safety of FFRN. However, the cooking loss was decreased from 3.11 ± 0.11 to 2.66 ± 0.13 and the hardness of FFRN was increased from 1186 ± 178 to 1980 ± 207 when it was fermented with single strains. Finally, a total of 42 volatile components were determined by Gas chromatography-ion Mobility Spectrometry and 8 aldehydes, 2 ketones, and 1 alcohol were added during the entire fermentation process. The main volatile components were different during fermentation depending on the added strain, and there was the greatest variety of volatiles in the group with added Saccharomyces cerevisiae. Full article
(This article belongs to the Special Issue Comprehensive Control Measures for Loss of Grain Storage)
Show Figures

Graphical abstract

14 pages, 2595 KB  
Article
Comparative Quality Evaluation of Physicochemical and Amylose Content Profiling in Rice Noodles from Diverse Rice Hybrids in China
by Hang Huang, Yufei Li, Jiale Zeng, Yazi Cao, Tiancheng Zhang, Guanghui Chen and Yue Wang
Agriculture 2023, 13(1), 140; https://doi.org/10.3390/agriculture13010140 - 5 Jan 2023
Cited by 9 | Viewed by 3834
Abstract
Rice noodles are one of southern people’s favorite foods in China, so it is important to find the suitable raw rice for rice noodle making. To study the effects of different rice varieties on the quality of fresh wet rice noodles and to [...] Read more.
Rice noodles are one of southern people’s favorite foods in China, so it is important to find the suitable raw rice for rice noodle making. To study the effects of different rice varieties on the quality of fresh wet rice noodles and to explore the relationship between the quality of the rice and the quality of the fresh wet rice noodles, this study to compare the 12 hybrid rice varieties as raw materials analyzed the differences in the cooking quality, texture index, and sensory score of fresh wet rice noodles using the principal component analysis, membership function, and cluster analysis. The results showed that the quality of fresh wet rice noodles prepared from different hybrid rice materials differed significantly. The fresh wet rice noodles made from Liangyou 5836 are of good quality, and they are mainly characterized by a low rate of broken noodles and spit pulp value, high rice noodle hardness, good rice noodle elasticity, strong rice noodle chewiness, and low adhesiveness. Moreover, its sensory evaluation is also better than that of other varieties. The comprehensive evaluation of 12 hybrid rice varieties by subordinate function analysis also showed that Liangyou 5836 was the best. In addition, through principal component analysis and gray analysis, it was found that 14 related indicators of rice quality and fresh wet rice noodle quality were concentrated into four categories, among which gel consistency best reflects the quality of rice and fresh wet rice noodles. Through comprehensive analysis, it was found that an amylose content of about 22% and a gel consistency of less than 40 mm can be used as core indicators to screen varieties suitable for making rice noodles. This study is of great significance for the selection of hybrid rice for both rice quality and fresh wet rice noodle quality. Full article
(This article belongs to the Special Issue Prospects and Challenges of Rice Breeding under Climate Change)
Show Figures

Figure 1

12 pages, 3687 KB  
Article
Determining the Effect of Pre-Treatment in Rice Noodle Quality Subjected to Dehydration through Hierarchical Scoring
by Muhammad Heikal Ismail, Hii Ching Lik, Winny Routray and Meng Wai Woo
Processes 2021, 9(8), 1309; https://doi.org/10.3390/pr9081309 - 29 Jul 2021
Cited by 6 | Viewed by 5814
Abstract
Fresh rice noodle was usually coated in a large amount of oil to avoid stickiness and extend the shelf life. Pre-treatment has been applied to reduce the quantity of oil in rice noodle. In this research, the pre-treatment and temperature effect on the [...] Read more.
Fresh rice noodle was usually coated in a large amount of oil to avoid stickiness and extend the shelf life. Pre-treatment has been applied to reduce the quantity of oil in rice noodle. In this research, the pre-treatment and temperature effect on the rice noodle quality subjected to hot air drying, heat pump drying, and freeze drying was investigated. Texture, color, oil content, and starch gelatinization of the dried noodle was further evaluated. Results revealed that there were significant differences (p < 0.05%) in texture, color, oil content, and starch gelatinization in rice noodle subjected to pre-treatment. Furthermore, the texture, color, oil content, and starch gelatinization demonstrated a significant difference (p < 0.05%) in freeze drying rather than hot air drying and heat pump drying. The findings indicate that the qualitative features of the dehydrated noodle are synergistic to pretreatment and drying temperature. Despite superior quality shown by freeze drying, the hierarchical scoring has proven that rice noodle undergoing hot air drying at 30 °C to produce comparable quality attributes. The hierarchical scoring can be a useful tool in quality determination for the food industry. Full article
(This article belongs to the Special Issue Food Safety Management and Quality Control Techniques)
Show Figures

Figure 1

Back to TopTop