Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = formaldehyde–to–nitrogen dioxide ratio (FNR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 22622 KB  
Article
Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations
by Jing Fan, Chao Yu, Yichen Li, Ying Zhang, Meng Fan, Jinhua Tao and Liangfu Chen
Remote Sens. 2025, 17(19), 3321; https://doi.org/10.3390/rs17193321 - 27 Sep 2025
Cited by 1 | Viewed by 899
Abstract
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of [...] Read more.
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx)—such as the formaldehyde-to-nitrogen dioxide ratio (FNR, defined as HCHO/NO2, where HCHO represents VOCs and NO2 represents NOx)—is one of the most widely used satellite-based indicators. Recent studies have highlighted glyoxal (CHOCHO) as another critical ozone precursor, prompting the proposal of the glyoxal-to-nitrogen dioxide ratio (GNR, CHOCHO/NO2) as an alternative metric. This study systematically compares the performance of FNR and GNR across four major urban agglomerations in China: Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Chengdu–Chongqing (CY) region, by integrating satellite remote sensing with ground-based observations. Results reveal that both indices exhibit consistent spatial trends in OFS distribution, transitioning from VOC-limited regimes in urban centers to NOx-limited regimes in surrounding suburban areas. However, differences emerge in threshold values and classification outcomes. During summer, FNR identifies urban areas as transitional regimes (or VOC-limited in regions such as YRD and PRD), while suburban areas are classified as NOx-limited. In contrast, GNR, which shows heightened sensitive to anthropogenic VOCs (AVOCs), exhibits a more restricted spatial extent in the transition regimes. By autumn, most urban areas shift toward VOC-limited regimes, while suburban regions remain NOx-limited. Thresholds for both VOCs and NOx increase during this period, with GNR demonstrating stronger sensitivity to NOx. These findings underscore that the choice between FNR and GNR directly influences OFS determination, as their differing responses to biogenic and anthropogenic emissions lead to different conclusions. Future research should focus on integrating the complementary strengths of both indices to develop a more robust OFS identification method, thereby providing a theoretical basis for formulating effective ozone control strategies. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Trace Gases and Air Quality)
Show Figures

Figure 1

18 pages, 6837 KB  
Article
Analysis of Ozone Formation Sensitivity in Chinese Representative Regions Using Satellite and Ground-Based Data
by Yichen Li, Chao Yu, Jinhua Tao, Xiaoyan Lu and Liangfu Chen
Remote Sens. 2024, 16(2), 316; https://doi.org/10.3390/rs16020316 - 12 Jan 2024
Cited by 9 | Viewed by 3538
Abstract
O3 poses a significant threat to human health and the ecological environment. In recent years, O3 pollution has become increasingly serious, making it difficult to accurately control O3 precursor emissions. Satellite indicator methods, such as the FNR (formaldehyde-to-nitrogen dioxide ratio [...] Read more.
O3 poses a significant threat to human health and the ecological environment. In recent years, O3 pollution has become increasingly serious, making it difficult to accurately control O3 precursor emissions. Satellite indicator methods, such as the FNR (formaldehyde-to-nitrogen dioxide ratio (HCHO/NO2 ratio)), provide an effective way to identify ozone pollution control areas on a large geographical scale due to their simple acquisition of datasets. This can help determine the primary factors contributing to O3 pollution and assist in managing it. Based on TROPOMI data from May 2018 to December 2022, combined with ground-based monitoring data from the China National Environmental Monitoring Centre, we explored the uncertainty associated with using the HCHO/NO2 ratio (FNR) as an indicator in ozone control area determination. We focused on the four representative regions in China: Jing-Jin-Ji-Lu-Yu (JJJLY), Jiang-Zhe-Hu-Wan (JZHW), Chuan-Yu (CY), and South China. By using the statistical curve-fitting method, we found that the FNR thresholds were 3.5–5.1, 2.0–4.0, 2.5–4.2, and 1.7–3.5, respectively. Meanwhile, we analyzed the spatial and temporal characteristics of the HCHO, NO2, and O3 control areas. The HCHO concentrations and NO2 concentrations had obvious cyclical patterns, with higher HCHO column densities occurring in summer and higher NO2 concentrations in winter. These high values always appeared in areas with dense population activities and well-developed economies. The distribution characteristics of the ozone control areas indicated that during O3 pollution periods, the urban areas with industrial activities and high population densities were primarily controlled by VOCs, and the suburban areas gradually shifted from VOC-limited regimes to transitional regimes and eventually reverted back to VOC-limited regimes. In contrast, the rural and other remote areas with relatively less development were mainly controlled by NOx. The FNR also exhibited periodic variations, with higher values mostly appearing in summer and lower values appearing in winter. This study identifies the main factors contributing to O3 pollution in different regions of China and can serve as a valuable reference for O3 pollution control. Full article
Show Figures

Graphical abstract

16 pages, 6062 KB  
Article
Ozone Sensitivity Analysis and Ozone Formation Regimes Division in the Beijing–Tianjin–Hebei Region Based on Satellite Remote Sensing Data
by Hanyang Song, Wenji Zhao, Xingchuan Yang, Wenxing Hou, Linhan Chen and Pengfei Ma
Atmosphere 2023, 14(11), 1637; https://doi.org/10.3390/atmos14111637 - 31 Oct 2023
Cited by 9 | Viewed by 2972
Abstract
In recent years, the concentration of surface ozone (O3) has increased in China. The formation regime of ozone is closely related to the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx). To explain this increase in ozone, [...] Read more.
In recent years, the concentration of surface ozone (O3) has increased in China. The formation regime of ozone is closely related to the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx). To explain this increase in ozone, we determined the sensitivity of ozone generation by determining the regional threshold of the ratio of formaldehyde to nitrogen dioxide (HCHO/NO2) in the satellite troposphere. The different FNR(HCHO/NO2) ratio ranges indicate three formation regimes: VOC limited, transitional, and NOx limited. Polynomial fitting models were used to determine the threshold range for the transitional regime in the BTH region (2.0, 3.1). The ozone formation regime in the BTH (Beijing–Tianjin–Hebei) region mainly exhibited a transitional and NOx-limited regime. VOC-limited regimes are mainly distributed in urban agglomeration areas, transitional regimes are mainly concentrated in urban expansion areas, and non-urban areas are mainly controlled by NOx. The concentrations of HCHO and NO2 in the BTH region showed a trend of urban agglomeration areas > urban expansion areas > non-urban areas in different land types from 2019 to 2022, whereas the FNR showed an opposite trend. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing)
Show Figures

Figure 1

12 pages, 5989 KB  
Technical Note
Ozone Pollution of Megacity Shanghai during City-Wide Lockdown Assessed Using TROPOMI Observations of NO2 and HCHO
by Ruibin Xue, Shanshan Wang, Sanbao Zhang, Jingfang Zhan, Jian Zhu, Chuanqi Gu and Bin Zhou
Remote Sens. 2022, 14(24), 6344; https://doi.org/10.3390/rs14246344 - 15 Dec 2022
Cited by 11 | Viewed by 3715
Abstract
An unprecedented city-wide lockdown took place in Shanghai from April to May 2022 to curb the spread of COVID-19, which caused socio-economic disruption but a significant reduction of anthropogenic emissions in this metropolis. However, the ground-based monitoring data showed that the concentration of [...] Read more.
An unprecedented city-wide lockdown took place in Shanghai from April to May 2022 to curb the spread of COVID-19, which caused socio-economic disruption but a significant reduction of anthropogenic emissions in this metropolis. However, the ground-based monitoring data showed that the concentration of ozone (O3) remained at a high level. This study applied Tropospheric Monitoring Instrument (TROPOMI) observations to examine changes in tropospheric vertical column density (VCD) of nitrogen dioxide (NO2) and formaldehyde (HCHO), which are precursors of O3. Compared with the same period in 2019–2021, VCDs of NO2 and HCHO decreased respectively by ~50% and ~20%. Multiple regression analysis showed that the lockdown effect played a dominant role in this dramatic decline rather than meteorological impacts. Using the exponentially-modified Gaussian method, this study quantified nitrogen oxides (NOX) emission in Shanghai as 32.60 mol/s with a decrease of 50–80%, which was mainly contributed by the transportation and industrial sectors. The significant reduction of NOX emission in Shanghai is much higher than that of volatile organic compounds (VOCs), which led to dramatic changes in formaldehyde-to-nitrogen dioxide ratio (HCHO/NO2, FNR). Thus, when enforcing regulation on NOx emission control in the future, coordinately reducing VOCs emission should be implemented to mitigate urban O3 pollution. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

20 pages, 12540 KB  
Article
Fifteen-Year Trends (2005–2019) in the Satellite-Derived Ozone-Sensitive Regime in East Asia: A Gradual Shift from VOC-Sensitive to NOx-Sensitive
by Syuichi Itahashi, Hitoshi Irie, Hikari Shimadera and Satoru Chatani
Remote Sens. 2022, 14(18), 4512; https://doi.org/10.3390/rs14184512 - 9 Sep 2022
Cited by 16 | Viewed by 3704
Abstract
To mitigate tropospheric ozone (O3) pollution with proper and effective emission regulations, diagnostics for the O3-sensitive regime are critical. In this study, we analyzed the satellite-measured formaldehyde (HCHO) and nitrogen dioxide (NO2) column densities and derived the [...] Read more.
To mitigate tropospheric ozone (O3) pollution with proper and effective emission regulations, diagnostics for the O3-sensitive regime are critical. In this study, we analyzed the satellite-measured formaldehyde (HCHO) and nitrogen dioxide (NO2) column densities and derived the HCHO to NO2 ratio (FNR) from 2005 to 2019. Over China, there was a clear increase in the NO2 column during the first 5-year period and a subsequent decrease after 2010. Over the Republic of Korea and Japan, there was a continuous decline in the NO2 column over 15 years. Over the entire East Asia, a substantial increase in the HCHO column was identified during 2015–2019. Therefore, FNR increased over almost all of East Asia, especially during 2015–2019. This increasing trend in FNR indicated the gradual shift from a volatile organic compound (VOC)-sensitive to a nitrogen oxide (NOx)-sensitive regime. The long-term changes in HCHO and NO2 columns generally corresponded to anthropogenic non-methane VOC (NMVOC) and NOx emissions trends; however, anthropogenic sources did not explain the increasing HCHO column during 2015–2019. Because of the reduction in anthropogenic sources, the relative importance of biogenic NMVOC sources has been increasing and could have a larger impact on changing the O3-sensitive regime over East Asia. Full article
Show Figures

Figure 1

17 pages, 3676 KB  
Article
Satellite-Based Diagnosis and Numerical Verification of Ozone Formation Regimes over Nine Megacities in East Asia
by Hyo-Jung Lee, Lim-Seok Chang, Daniel A. Jaffe, Juseon Bak, Xiong Liu, Gonzalo González Abad, Hyun-Young Jo, Yu-Jin Jo, Jae-Bum Lee, Geum-Hee Yang, Jong-Min Kim and Cheol-Hee Kim
Remote Sens. 2022, 14(5), 1285; https://doi.org/10.3390/rs14051285 - 5 Mar 2022
Cited by 22 | Viewed by 6141
Abstract
Urban photochemical ozone (O3) formation regimes (NOx- and VOC-limited regimes) at nine megacities in East Asia were diagnosed based on near-surface O3 columns from 900 to 700 hPa, nitrogen dioxide (NO2), and formaldehyde (HCHO), which were [...] Read more.
Urban photochemical ozone (O3) formation regimes (NOx- and VOC-limited regimes) at nine megacities in East Asia were diagnosed based on near-surface O3 columns from 900 to 700 hPa, nitrogen dioxide (NO2), and formaldehyde (HCHO), which were inferred from measurements by ozone-monitoring instruments (OMI) for 2014–2018. The nine megacities included Beijing, Tianjin, Hebei, Shandong, Shanghai, Seoul, Busan, Tokyo, and Osaka. The space-borne HCHO–to–NO2 ratio (FNR) inferred from the OMI was applied to nine megacities and verified by a series of sensitivity tests of Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations by halving the NOx and VOC emissions. The results showed that the satellite-based FNRs ranged from 1.20 to 2.62 and the regimes over the nine megacities were identified as almost NOx-saturated conditions, while the domain-averaged FNR in East Asia was >2. The results of WRF–Chem sensitivity modeling show that O3 increased when the NOx emissions reduced, whereas VOC emission reduction showed a significant decrease in O3, confirming the characteristics of VOC-limited conditions in all of the nine megacities. When both NOx and VOC emissions were reduced, O3 decreased in most cities, but increased in the three lowest-FNRs megacities, such as Shanghai, Seoul, and Tokyo, where weakened O3 titration caused by NOx reduction had a larger enough effect to offset O3 suppression induced by the decrease in VOCs. Our model results, therefore, indicated that the immediate VOC emission reduction is a key controlling factor to decrease megacity O3 in East Asia, and also suggested that both VOC and NOx reductions may not be of broad utility in O3 abatement in megacities and should be considered judiciously in highly NOx-saturated cities in East Asia. Full article
Show Figures

Figure 1

17 pages, 5733 KB  
Article
Ozone Continues to Increase in East Asia Despite Decreasing NO2: Causes and Abatements
by Hyo-Jung Lee, Lim-Seok Chang, Daniel A. Jaffe, Juseon Bak, Xiong Liu, Gonzalo González Abad, Hyun-Young Jo, Yu-Jin Jo, Jae-Bum Lee and Cheol-Hee Kim
Remote Sens. 2021, 13(11), 2177; https://doi.org/10.3390/rs13112177 - 2 Jun 2021
Cited by 44 | Viewed by 5543
Abstract
Space-borne ozone (O3) measurements have indicated consistent positive trends across the entire Asia–Pacific region despite the considerable reduction of NOx since 2000s. The rate of increase in O3 derived from lower free tropospheric column measurements was observed to be [...] Read more.
Space-borne ozone (O3) measurements have indicated consistent positive trends across the entire Asia–Pacific region despite the considerable reduction of NOx since 2000s. The rate of increase in O3 derived from lower free tropospheric column measurements was observed to be 0.21 ± 0.05 DU/decade during 2005–2018. Our space-borne-based diagnosis of the nonlinear photochemical formation regimes, NOx-limited and NOx-saturated, show that O3 chemistry is undergoing a transitional process to the NOx-limited regime throughout most of the Asian region. Nevertheless, NOx-saturated conditions persist at present in and over eight major megacities. These NOx-saturated conditions in megacities contribute to the increased O3 due to NOx reduction, which could also affect the enhanced O3 concentrations throughout the Asia–Pacific region via long-range transport. This indicates that VOC limits along with NOx reductions are needed in megacities in the short term to reduce O3 levels. Moreover, NOx saturation in major megacities will continue until 2025, according to the forecast emission scenarios from the Intergovernmental Panel on Climate Change (IPCC). These scenarios gradually shift nearly all cities to the NOx-limited regime by 2050 with the exception of few cities under IPCC RCP8.5. Thus, continued reductions in NOx will be a key factor in reducing O3 in the long term. Full article
Show Figures

Figure 1

Back to TopTop