Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = forkhead box A1 (FOXA1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9743 KiB  
Article
Metformin Prevents Tumor Cell Growth and Invasion of Human Hormone Receptor-Positive Breast Cancer (HR+ BC) Cells via FOXA1 Inhibition
by Christine Song, Dawa Jung, Ayse Tuba Kendi, Jin Kyung Rho, Eun-Joo Kim, Ian Horn, Geoffry L. Curran, Sujala Ghattamaneni, Ji Yeon Shim, Pil Soo Kang, Daehun Kang, Jay B. Thakkar, Sannidhi Dewan, Val J. Lowe and Seung Baek Lee
Int. J. Mol. Sci. 2024, 25(13), 7494; https://doi.org/10.3390/ijms25137494 - 8 Jul 2024
Cited by 2 | Viewed by 3184
Abstract
Women with type 2 diabetes (T2D) have a higher risk of being diagnosed with breast cancer and have worse survival than non-diabetic women if they do develop breast cancer. However, more research is needed to elucidate the biological underpinnings of these relationships. Here, [...] Read more.
Women with type 2 diabetes (T2D) have a higher risk of being diagnosed with breast cancer and have worse survival than non-diabetic women if they do develop breast cancer. However, more research is needed to elucidate the biological underpinnings of these relationships. Here, we found that forkhead box A1 (FOXA1), a forkhead family transcription factor, and metformin (1,1-dimethylbiguanide hydrochloride), a medication used to treat T2D, may impact hormone-receptor-positive (HR+) breast cancer (BC) tumor cell growth and metastasis. Indeed, fourteen diabetes-associated genes are highly expressed in only three HR+ breast cancer cell lines but not the other subtypes utilizing a 53,805 gene database obtained from NCBI GEO. Among the diabetes-related genes, FOXA1, MTA3, PAK4, FGFR3, and KIF22 were highly expressed in HR+ breast cancer from 4032 breast cancer patient tissue samples using the Breast Cancer Gene Expression Omnibus. Notably, elevated FOXA1 expression correlated with poorer overall survival in patients with estrogen-receptor-positive/progesterone-receptor-positive (ER+/PR+) breast cancer. Furthermore, experiments demonstrated that loss of the FOXA1 gene inhibited tumor proliferation and invasion in vitro using MCF-7 and T47D HR+ breast cancer cell lines. Metformin, an anti-diabetic medication, significantly suppressed tumor cell growth in MCF-7 cells. Additionally, either metformin treatment or FOXA1 gene deletion enhanced tamoxifen-induced tumor growth inhibition in HR+ breast cancer cell lines within an ex vivo three-dimensional (3D) organoid model. Therefore, the diabetes-related medicine metformin and FOXA1 gene inhibition might be a new treatment for patients with HR+ breast cancer when combined with tamoxifen, an endocrine therapy. Full article
(This article belongs to the Special Issue Cell and Molecular Perspectives in Breast Cancer)
Show Figures

Figure 1

19 pages, 3619 KiB  
Article
Unveiling the Molecular Landscape of FOXA1 Mutant Prostate Cancer: Insights and Prospects for Targeted Therapeutic Strategies
by Kyung Won Hwang, Jae Won Yun and Hong Sook Kim
Int. J. Mol. Sci. 2023, 24(21), 15823; https://doi.org/10.3390/ijms242115823 - 31 Oct 2023
Cited by 6 | Viewed by 2918
Abstract
Prostate cancer continues to pose a global health challenge as one of the most prevalent malignancies. Mutations of the Forkhead box A1 (FOXA1) gene have been linked to unique oncogenic features in prostate cancer. In this study, we aimed to unravel [...] Read more.
Prostate cancer continues to pose a global health challenge as one of the most prevalent malignancies. Mutations of the Forkhead box A1 (FOXA1) gene have been linked to unique oncogenic features in prostate cancer. In this study, we aimed to unravel the intricate molecular characteristics of FOXA1 mutant prostate cancer through comprehensive in silico analysis of transcriptomic data from The Cancer Genome Atlas (TCGA). A comparison between FOXA1 mutant and control groups unearthed 1525 differentially expressed genes (DEGs), which map to eight intrinsic and six extrinsic signaling pathways. Interestingly, the majority of intrinsic pathways, but not extrinsic pathways, were validated using RNA-seq data of 22Rv1 cells from the GEO123619 dataset, suggesting complex biology in the tumor microenvironment. As a result of our in silico research, we identified novel therapeutic targets and potential drug candidates for FOXA1 mutant prostate cancer. KDM1A, MAOA, PDGFB, and HSP90AB1 emerged as druggable candidate targets, as we found that they have approved drugs throughout the drug database CADDIE. Notably, as most of the approved drugs targeting MAOA and KDM1A were monoamine inhibitors used for mental illness or diabetes, we suggest they have a potential to cure FOXA1 mutant primary prostate cancer without lethal side effects. Full article
(This article belongs to the Special Issue Advances in Prostate Cancer Diagnostics and Therapy)
Show Figures

Figure 1

21 pages, 5956 KiB  
Article
Impact of Fetal Exposure to Endocrine Disrupting Chemical Mixtures on FOXA3 Gene and Protein Expression in Adult Rat Testes
by Casandra Walker, Annie Boisvert, Priyanka Malusare and Martine Culty
Int. J. Mol. Sci. 2023, 24(2), 1211; https://doi.org/10.3390/ijms24021211 - 7 Jan 2023
Cited by 5 | Viewed by 3126
Abstract
Perinatal exposure to endocrine disrupting chemicals (EDCs) has been shown to affect male reproductive functions. However, the effects on male reproduction of exposure to EDC mixtures at doses relevant to humans have not been fully characterized. In previous studies, we found that in [...] Read more.
Perinatal exposure to endocrine disrupting chemicals (EDCs) has been shown to affect male reproductive functions. However, the effects on male reproduction of exposure to EDC mixtures at doses relevant to humans have not been fully characterized. In previous studies, we found that in utero exposure to mixtures of the plasticizer di(2-ethylhexyl) phthalate (DEHP) and the soy-based phytoestrogen genistein (Gen) induced abnormal testis development in rats. In the present study, we investigated the molecular basis of these effects in adult testes from the offspring of pregnant SD rats gavaged with corn oil or Gen + DEHP mixtures at 0.1 or 10 mg/kg/day. Testicular transcriptomes were determined by microarray and RNA-seq analyses. A protein analysis was performed on paraffin and frozen testis sections, mainly by immunofluorescence. The transcription factor forkhead box protein 3 (FOXA3), a key regulator of Leydig cell function, was identified as the most significantly downregulated gene in testes from rats exposed in utero to Gen + DEHP mixtures. FOXA3 protein levels were decreased in testicular interstitium at a dose previously found to reduce testosterone levels, suggesting a primary effect of fetal exposure to Gen + DEHP on adult Leydig cells, rather than on spermatids and Sertoli cells, also expressing FOXA3. Thus, FOXA3 downregulation in adult testes following fetal exposure to Gen + DEHP may contribute to adverse male reproductive outcomes. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Steroid Hormone Biosynthesis and Action)
Show Figures

Figure 1

18 pages, 4101 KiB  
Article
The Fibrotic Effects of LINC00663 in Human Hepatic Stellate LX-2 Cells and in Bile Duct-Ligated Cholestasis Mice Are Mediated through the Splicing Factor 2-Fibronectin
by Yang Chu, Linan Bao, Yun Teng, Bo Yuan, Lijie Ma, Ying Liu and Hui Kang
Cells 2023, 12(2), 215; https://doi.org/10.3390/cells12020215 - 4 Jan 2023
Cited by 4 | Viewed by 3257
Abstract
Hepatic fibrosis can develop into cirrhosis or even cancer without active therapy at an early stage. Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of a wide variety of important biological processes. However, lncRNA mechanism(s) involved in cholestatic [...] Read more.
Hepatic fibrosis can develop into cirrhosis or even cancer without active therapy at an early stage. Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of a wide variety of important biological processes. However, lncRNA mechanism(s) involved in cholestatic liver fibrosis remain unclear. RNA sequence data of hepatic stellate cells from bile duct ligation (BDL) mice or controls were analyzed by weighted gene co-expression network analysis (WGCNA). Based on WGCNA analysis, a competing endogenous RNA network was constructed. We identified LINC00663 and evaluated its function using a panel of assays, including a wound healing assay, a dual-luciferase reporter assay, RNA binding protein immunoprecipitation and chromatin immunoprecipitation. Functional research showed that LINC00663 promoted the activation, migration and epithelial–mesenchymal transition (EMT) of LX-2 cells and liver fibrosis in BDL mice. Mechanistically, LINC00663 regulated splicing factor 2 (SF2)-fibronectin (FN) alternative splicing through the sponging of hsa-miR-3916. Moreover, forkhead box A1 (FOXA1) specifically interacted with the promoter of LINC00663. In summary, we elaborated the fibrotic effects of LINC00663 in human hepatic stellate LX-2 cells and in bile duct-ligated cholestasis mice. We established a FOXA1/LINC00663/hsa-miR-3916/SF2-FN axis that provided a potential target for the diagnosis and targeted therapy of cholestatic liver fibrosis. Full article
Show Figures

Figure 1

15 pages, 4223 KiB  
Article
Intercellular Communication Reveals Therapeutic Potential of Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer
by Yang Liu, Yu Fang, Lili Bao, Feng Wu, Shilong Wang and Siyu Hao
Biomolecules 2022, 12(10), 1478; https://doi.org/10.3390/biom12101478 - 14 Oct 2022
Cited by 12 | Viewed by 3315
Abstract
(1) Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high intra-tumoral heterogeneity. The epithelial-mesenchymal transition (EMT) is one of the inducers of cancer metastasis and migration. However, the description of the EMT process in TNBC using single-cell RNA [...] Read more.
(1) Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high intra-tumoral heterogeneity. The epithelial-mesenchymal transition (EMT) is one of the inducers of cancer metastasis and migration. However, the description of the EMT process in TNBC using single-cell RNA sequencing (scRNA-seq) remains unclear. (2) Methods: In this study, we analyzed 8938 cellular gene expression profiles from five TNBC patients. We first scored each malignant cell based on functional pathways to determine its EMT characteristics. Then, a pseudo-time trajectory analysis was employed to characterize the cell trajectories. Furthermore, CellChat was used to identify the cellular communications. (3) Results: We identified 888 epithelium-like and 846 mesenchyme-like malignant cells, respectively. A further pseudo-time trajectory analysis indicated the transition trends from epithelium-like to mesenchyme-like in malignant cells. To characterize the potential regulators of the EMT process, we identified 10 dysregulated transcription factors (TFs) between epithelium-like and mesenchyme-like malignant cells, in which overexpressed forkhead box protein A1 (FOXA1) was recognized as a poor prognosis marker of TNBC. Furthermore, we dissected the cell-cell communications via ligand-receptor (L-R) interactions. We observed that tumor-associated macrophages (TAMs) may support the invasion of malignant epithelial cells, based on CXCL-CXCR2 signaling. The tumor necrosis factor (TNF) signaling pathway secreted by TAMs was identified as an outgoing communication pattern, mediating the communications between monocytes/TAMs and malignant epithelial cells. Alternatively, the TNF-related ligand-receptor (L-R) pairs showed promising clinical implications. Some immunotherapy and anti-neoplastic drugs could interact with the L-R pairs as a potential strategy for the treatment of TNBC. In summary, this study enhances the understanding of the EMT process in the TNBC microenvironment, and dissections of EMT-related cell communications also provided us with potential treatment targets. Full article
Show Figures

Figure 1

20 pages, 5123 KiB  
Article
CD44 Promotes Breast Cancer Metastasis through AKT-Mediated Downregulation of Nuclear FOXA2
by Anupama Vadhan, Ming-Feng Hou, Priya Vijayaraghavan, Yi-Chia Wu, Stephen Chu-Sung Hu, Yun-Ming Wang, Tian-Lu Cheng, Yen-Yun Wang and Shyng-Shiou F. Yuan
Biomedicines 2022, 10(10), 2488; https://doi.org/10.3390/biomedicines10102488 - 5 Oct 2022
Cited by 21 | Viewed by 3134
Abstract
The primary cause of breast cancer mortality is the metastatic invasion of cancerous stem cells (CSC). Cluster of differentiation 44 (CD44) is a well-known CSC marker in various cancers, as well as a key role player in metastasis and relapse of breast cancer. [...] Read more.
The primary cause of breast cancer mortality is the metastatic invasion of cancerous stem cells (CSC). Cluster of differentiation 44 (CD44) is a well-known CSC marker in various cancers, as well as a key role player in metastasis and relapse of breast cancer. CD44 is a cell-membrane embedded protein, and it interacts with different proteins to regulate cancer cell behavior. Transcription factor forkhead box protein A2 (FOXA2) acts as an important regulator in multiple cancers, including breast cancer. However, the biological significance of CD44-FOXA2 association in breast cancer metastasis remains unclear. Herein, we observed that CD44 expression was higher in metastatic lymph nodes compared to primary tumors using a flow cytometric analysis. CD44 overexpression in breast cancer cell lines significantly promoted cell migration and invasion abilities, whereas the opposite effects occurred upon the knockdown of CD44. The stem cell array analysis revealed that FOXA2 expression was upregulated in CD44 knockdown cells. However, the knockdown of FOXA2 in CD44 knockdown cells reversed the effects on cell migration and invasion. Furthermore, we found that CD44 mediated FOXA2 localization in breast cancer cells through the AKT pathway. Moreover, the immunofluorescence assay demonstrated that AKT inhibitor wortmannin and AKT activator SC79 treatment in breast cancer cells impacted FOXA2 localization. Collectively, this study highlights that CD44 promotes breast cancer metastasis by downregulating nuclear FOXA2. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

13 pages, 3921 KiB  
Article
In Vivo Application of CRISPR/Cas9 Revealed Implication of Foxa1 and Foxp1 in Prostate Cancer Proliferation and Epithelial Plasticity
by Huiqiang Cai, Simon N. Agersnap, Amalie Sjøgren, Mikkel K. Simonsen, Mathilde S. Blaavand, Ulrikke V. Jensen and Martin K. Thomsen
Cancers 2022, 14(18), 4381; https://doi.org/10.3390/cancers14184381 - 8 Sep 2022
Cited by 12 | Viewed by 3490
Abstract
Prostate cancer is the most common cancer in men in the Western world and the number is rising. Prostate cancer is notoriously heterogeneous, which makes it hard to generate and study in pre-clinical models. The family of Forkhead box (FOX) transcription factors are [...] Read more.
Prostate cancer is the most common cancer in men in the Western world and the number is rising. Prostate cancer is notoriously heterogeneous, which makes it hard to generate and study in pre-clinical models. The family of Forkhead box (FOX) transcription factors are often altered in prostate cancer with especially high mutation burden in FOXA1 and FOXP1. FOXA1 harbors loss or gain of function mutations in 8% of prostate cancer, which increases to 14% in metastatic samples. FOXP1 predominately occurs with loss of function mutations in 7% of primary tumors, and similar incidents are found in metastatic samples. Here, we applied in vivo CRISPR editing, to study the loss of functions of these two FOX transcription factors, in murine prostate in combination with loss of Pten. Deficiency of Foxp1 increased proliferation in combination with loss of Pten. In contrast, proliferation was unchanged when androgen was deprived. The expression of Tmprss2 was increased when Foxp1 was mutated in vivo, showing that Foxp1 is a repressor for this androgen-regulated target. Furthermore, analysis of FOXP1 and TMPRSS2 expression in a human prostate cancer data set revealed a negative correlation. Mutation of Foxa1 in the murine prostate induces cell plasticity to luminal cells. Here, epithelial cells with loss of Foxa1 were transdifferentiated to cells with expression of the basal markers Ck5 and p63. Interestingly, these cells were located in the lumen and did not co-express Ck8. Overall, this study reveals that loss of Foxp1 increases cell proliferation, whereas loss of Foxa1 induces epithelial plasticity in prostate cancer. Full article
(This article belongs to the Special Issue CRISPR-Mediated Cancer Modeling)
Show Figures

Figure 1

7 pages, 578 KiB  
Article
Endometrial Cancer in Aspect of Forkhead Box Protein Contribution
by Olga Adamczyk-Gruszka, Agata Horecka-Lewitowicz, Jakub Gruszka, Monika Wawszczak-Kasza, Agnieszka Strzelecka and Piotr Lewitowicz
Int. J. Environ. Res. Public Health 2022, 19(16), 10403; https://doi.org/10.3390/ijerph191610403 - 21 Aug 2022
Cited by 1 | Viewed by 1830
Abstract
(1) Background: The present study aimed to investigate the influence of forkhead box (FOX) on endometrial cancer (EC) progression. For a better understanding, the driving mechanisms are vital to identifying correlations between genes and their regulators. (2) Methods: The study enrolled one hundred [...] Read more.
(1) Background: The present study aimed to investigate the influence of forkhead box (FOX) on endometrial cancer (EC) progression. For a better understanding, the driving mechanisms are vital to identifying correlations between genes and their regulators. (2) Methods: The study enrolled one hundred and three white female patients with confirmed EC. For the analysis, we used next-generation sequencing with the Hot Spot Cancer Panel provided by Illumina Inc., San Diego, CA, USA, and an immunohistochemical analysis of FOXA1, FOXP1, and estrogen receptors. (3) Results: FOXA1 silencing led to a worse outcome based on the correlation with FOXA1 (test log-rank p = 0.04220 and HR 2.66, p = 0.033). Moreover, FOX proteins were closely correlated with TP53 and KRAS mutation. (4) Conclusions: Our study confirmed previous reports about FOX box protein in the regulation of tumor growth. A remarkable observation about the unclear crosstalk with crucial genes, as TP53 and KRAS need deeper investigation. Full article
Show Figures

Figure 1

15 pages, 4285 KiB  
Article
PGC1α Cooperates with FOXA1 to Regulate Epithelial Mesenchymal Transition through the TCF4-TWIST1
by Xue-Quan Fang, Mingyu Lee, Woo-Jin Lim, Seonghoon Lee, Chang-Hoon Lim and Ji-Hong Lim
Int. J. Mol. Sci. 2022, 23(15), 8247; https://doi.org/10.3390/ijms23158247 - 26 Jul 2022
Cited by 6 | Viewed by 3122
Abstract
The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a critical transcriptional coactivator that maintains metabolic homeostasis and energy expenditure by cooperating with various transcription factors. Recent studies have shown that PGC1α deficiency promotes lung cancer metastasis to the bone through activation of [...] Read more.
The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a critical transcriptional coactivator that maintains metabolic homeostasis and energy expenditure by cooperating with various transcription factors. Recent studies have shown that PGC1α deficiency promotes lung cancer metastasis to the bone through activation of TCF4 and TWIST1-mediated epithelial–mesenchymal transition (EMT), which is suppressed by the inhibitor of DNA binding 1 (ID1); however, it is not clear which transcription factor participates in PGC1α-mediated EMT and lung cancer metastasis. Here, we identified forkhead box A1 (FOXA1) as a potential transcription factor that coordinates with PGC1α and ID1 for EMT gene expression using transcriptome analysis. Cooperation between FOXA1 and PGC1α inhibits promoter occupancy of TCF4 and TWIST1 on CDH1 and CDH2 proximal promoter regions due to increased ID1, consequently regulating the expression of EMT-related genes such as CDH1, CDH2, VIM, and PTHLH. Transforming growth factor beta 1 (TGFβ1), a major EMT-promoting factor, was found to decrease ID1 due to the suppression of FOXA1 and PGC1α. In addition, ectopic expression of ID1, FOXA1, and PGC1α reversed TGFβ1-induced EMT gene expression. Our findings suggest that FOXA1- and PGC1α-mediated ID1 expression involves EMT by suppressing TCF4 and TWIST1 in response to TGFβ1. Taken together, this transcriptional framework is a promising molecular target for the development of therapeutic strategies for lung cancer metastasis. Full article
Show Figures

Figure 1

13 pages, 2599 KiB  
Article
Bee Venom Prevents Mucin 5AC Production through Inhibition of AKT and SPDEF Activation in Airway Epithelia Cells
by Sanga Kim, Hee-Won Kim, Seok-Hwan Chang, Kang-Hyun Leem and Hae-Jeong Park
Toxins 2021, 13(11), 773; https://doi.org/10.3390/toxins13110773 - 1 Nov 2021
Cited by 2 | Viewed by 2794
Abstract
IL-13 induces mucus metaplasia, which causes airway obstruction in asthma. Bee venom (BV) and its components have shown anti-inflammatory effects in allergic diseases such as atopic dermatitis and asthma. In this study, we investigated the effect of BV on IL-13-induced mucus metaplasia through [...] Read more.
IL-13 induces mucus metaplasia, which causes airway obstruction in asthma. Bee venom (BV) and its components have shown anti-inflammatory effects in allergic diseases such as atopic dermatitis and asthma. In this study, we investigated the effect of BV on IL-13-induced mucus metaplasia through activation of the signal transducer and activator of transcription (STAT6), and regulation of SAM-pointed domain containing Ets-like factor (SPDEF) and forkhead box A2 (FOXA2) in the airway epithelia cell line A549. In A549 cells, BV (1.0 µg/mL) inhibited IL-13 (10 ng/mL)-induced AKT phosphorylation, increase in SPDEF protein expression, and decrease in FOXA2 protein expression—but not STAT6 phosphorylation. BV also prevented the IL-13-induced increase in mucin 5AC (MUC5AC) mRNA and protein expression. Moreover, we observed that inhibition of phosphoinositide 3 kinase (PI3K)/AKT using LY294002 (50 µM) could reverse the alterations in FOXA2 and MUC5AC expression -by IL-13 and BV. However, LY294002 did not affect IL-13- and BV-induced changes in SPDEF expression. These findings indicate that BV inhibits MUC5AC production through the regulation of SPDEF and FOXA2. The inhibition of MUC5AC production through FOXA2 is mediated via the suppression of PI3K/AKT activation by BV. BV may be helpful in the prevention of mucus metaplasia in asthma. Full article
Show Figures

Figure 1

11 pages, 1968 KiB  
Article
Fetal Brain Elicits Sexually Conflicting Transcriptional Response to the Ablation of Uterine Forkhead Box A2 (Foxa2) in Mice
by Pramod Dhakal, Monica Strawn, Ananya Samal and Susanta K. Behura
Int. J. Mol. Sci. 2021, 22(18), 9693; https://doi.org/10.3390/ijms22189693 - 7 Sep 2021
Cited by 8 | Viewed by 2569
Abstract
In this study, we investigated the effects of ablation of uterine Forkhead Box A2 (Foxa2) on gene expression of fetal brain relative to placenta. Using a conditional knockout mouse model for uterine Foxa2, here we show that the lack of [...] Read more.
In this study, we investigated the effects of ablation of uterine Forkhead Box A2 (Foxa2) on gene expression of fetal brain relative to placenta. Using a conditional knockout mouse model for uterine Foxa2, here we show that the lack of uterine Foxa2 elicits a sexually-conflicting transcriptional response in the fetal brain relative to placenta. The ablation of Foxa2 in the uterus altered expression of genes related to growth, nutrient sensing, aging, longevity and angiogenesis among others. In the wildtype mice, these genes were expressed higher in the fetal brain and placenta of males compared to females. However, in mice lacking uterine Foxa2, the same genes showed the opposite pattern i.e., higher expression in the fetal brain and placenta of females compared to males. Based on the known marker genes of mice placenta and fetal brain cells, we further predicted that the genes exhibiting the sexually conflicting expression were associated with vascular endothelial cells. Overall, our study suggests that uterine Foxa2 plays a role in the regulation of the brain-placental axis by influencing the fetoplacental vascular changes during pregnancy. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 1240 KiB  
Article
Whole Genome Sequencing Reveals the Effects of Recent Artificial Selection on Litter Size of Bamei Mutton Sheep
by Yaxin Yao, Zhangyuan Pan, Ran Di, Qiuyue Liu, Wenping Hu, Xiaofei Guo, Xiaoyun He, Shangquan Gan, Xiangyu Wang and Mingxing Chu
Animals 2021, 11(1), 157; https://doi.org/10.3390/ani11010157 - 12 Jan 2021
Cited by 14 | Viewed by 3815
Abstract
Bamei mutton sheep is a Chinese domestic sheep breed developed by crossing German Mutton Merino sheep and indigenous Mongolian sheep for meat production. Here, we focused on detecting candidate genes associated with the increasing of the litter size in this breeds under recent [...] Read more.
Bamei mutton sheep is a Chinese domestic sheep breed developed by crossing German Mutton Merino sheep and indigenous Mongolian sheep for meat production. Here, we focused on detecting candidate genes associated with the increasing of the litter size in this breeds under recent artificial selection to improve the efficiency of mutton production. We selected five high- and five low-fecundity Bamei mutton sheep for whole-genome resequencing to identify candidate genes for sheep prolificacy. We used the FST and XP-EHH statistical approach to detect the selective sweeps between these two groups. Combining the two selective sweep methods, the reproduction-related genes JUN, ITPR3, PLCB2, HERC5, and KDM4B were detected. JUN, ITPR3, and PLCB2 play vital roles in GnRH (gonadotropin-releasing hormone), oxytocin, and estrogen signaling pathway. Moreover, KDM4B, which had the highest FST value, exhibits demethylase activity. It can affect reproduction by binding the promoters of estrogen-regulated genes, such as FOXA1 (forkhead box A1) and ESR1 (estrogen receptor 1). Notably, one nonsynonymous mutation (p.S936A) specific to the high-prolificacy group was identified at the TUDOR domain of KDM4B. These observations provide a new opportunity to research the genetic variation influencing fecundity traits within a population evolving under artificial selection. The identified genomic regions that are responsible for litter size can in turn be used for further selection. Full article
Show Figures

Figure 1

17 pages, 755 KiB  
Article
Evaluation of Innate Immune Mediators Related to Respiratory Viruses in the Lung of Stable COPD Patients
by Silvestro E. D’Anna, Mauro Maniscalco, Vitina Carriero, Isabella Gnemmi, Gaetano Caramori, Francesco Nucera, Luisella Righi, Paola Brun, Bruno Balbi, Ian M Adcock, Maria Grazia Stella, Fabio L.M. Ricciardolo and Antonino Di Stefano
J. Clin. Med. 2020, 9(6), 1807; https://doi.org/10.3390/jcm9061807 - 10 Jun 2020
Cited by 7 | Viewed by 3542
Abstract
Background: Little is known about the innate immune response to viral infections in stable Chronic Obstructive Pulmonary Disease (COPD). Objectives: To evaluate the innate immune mediators related to respiratory viruses in the bronchial biopsies and lung parenchyma of stable COPD patients. Methods: We [...] Read more.
Background: Little is known about the innate immune response to viral infections in stable Chronic Obstructive Pulmonary Disease (COPD). Objectives: To evaluate the innate immune mediators related to respiratory viruses in the bronchial biopsies and lung parenchyma of stable COPD patients. Methods: We evaluated the immunohistochemical (IHC) expression of Toll-like receptors 3-7-8-9 (TLR-3-7-8-9), TIR domain-containing adaptor inducing IFNβ (TRIF), Interferon regulatory factor 3 (IRF3), Phospho interferon regulatory factor 3  ( pIRF3), Interferon regulatory factor 7 (IRF7), Phospho interferon regulatory factor 7 (pIRF7), retinoic acid-inducible gene I (RIG1), melanoma differentiation-associated protein 5 (MDA5), Probable ATP-dependent RNA helicase DHX58 ( LGP2), Mitochondrial antiviral-signaling protein (MAVS), Stimulator of interferon genes (STING), DNA-dependent activator of IFN regulatory factors (DAI), forkhead box protein A3(FOXA3), Interferon alfa (IFNα), and Interferon beta (IFNβ) in the bronchial mucosa of patients with mild/moderate (n = 16), severe/very severe (n = 18) stable COPD, control smokers (CS) (n = 12), and control non-smokers (CNS) (n = 12). We performed similar IHC analyses in peripheral lung from COPD (n = 12) and CS (n = 12). IFNα and IFNβ were assessed in bronchoalveolar lavage (BAL) supernatant from CNS (n = 8), CS (n = 9) and mild/moderate COPD (n = 12). Viral load, including adenovirus-B, -C, Bocavirus, Respiratory syncytial Virus (RSV),Human Rhinovirus (HRV), Coronavirus, Influenza virus A (FLU-A), Influenza virus B (FLU-B), and Parainfluenzae-1 were measured in bronchial rings and lung parenchyma of COPD patients and the related control group (CS). Results: Among the viral-related innate immune mediators, RIG1, LGP2, MAVS, STING, and DAI resulted well expressed in the bronchial and lung tissues of COPD patients, although not in a significantly different mode from control groups. Compared to CS, COPD patients showed no significant differences of viral load in bronchial rings and lung parenchyma. Conclusions: Some virus-related molecules are well-expressed in the lung tissue and bronchi of stable COPD patients independently of the disease severity, suggesting a “primed” tissue environment capable of sensing the potential viral infections occurring in these patients. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

27 pages, 5063 KiB  
Article
LINC00261 Is Differentially Expressed in Pancreatic Cancer Subtypes and Regulates a Pro-Epithelial Cell Identity
by Agnes Dorn, Markus Glaß, Carolin T. Neu, Beate Heydel, Stefan Hüttelmaier, Tony Gutschner and Monika Haemmerle
Cancers 2020, 12(5), 1227; https://doi.org/10.3390/cancers12051227 - 13 May 2020
Cited by 23 | Viewed by 5150
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the major causes of cancer-associated deaths worldwide, with a dismal prognosis that has not significantly changed over the last decades. Transcriptional analysis has provided valuable insights into pancreatic tumorigenesis. Specifically, pancreatic cancer subtypes were identified, characterized by [...] Read more.
Pancreatic adenocarcinoma (PDAC) is one of the major causes of cancer-associated deaths worldwide, with a dismal prognosis that has not significantly changed over the last decades. Transcriptional analysis has provided valuable insights into pancreatic tumorigenesis. Specifically, pancreatic cancer subtypes were identified, characterized by specific mutations and gene expression changes associated with differences in patient survival. In addition to differentially regulated mRNAs, non-coding RNAs, including long non-coding RNAs (lncRNAs), were shown to have subtype-specific expression patterns. Hence, we aimed to characterize prognostic lncRNAs with deregulated expression in the squamous subtype of PDAC, which has the worst prognosis. Extensive in silico analyses followed by in vitro experiments identified long intergenic non-coding RNA 261 (LINC00261) as a downregulated lncRNA in the squamous subtype of PDAC, which is generally associated with transforming growth factor β (TGFβ) signaling in human cancer cells. Its genomic neighbor, the transcription factor forkhead box protein A2 (FOXA2), regulated LINC00261 expression by direct binding of the LINC00261 promoter. CRISPR-mediated knockdown and promoter knockout validated the importance of LINC00261 in TGFβ-mediated epithelial–mesenchymal transition (EMT) and established the epithelial marker E-cadherin, an important cell adhesion protein, as a downstream target of LINC00261. Consequently, depletion of LINC00261 enhanced motility and invasiveness of PANC-1 cells in vitro. Altogether, our data suggest that LINC00261 is an important tumor-suppressive lncRNA in PDAC that is involved in maintaining a pro-epithelial state associated with favorable disease outcome. Full article
Show Figures

Figure 1

15 pages, 2936 KiB  
Article
NR2F2 Orphan Nuclear Receptor is Involved in Estrogen Receptor Alpha-Mediated Transcriptional Regulation in Luminal A Breast Cancer Cells
by Edina Erdős and Bálint László Bálint
Int. J. Mol. Sci. 2020, 21(6), 1910; https://doi.org/10.3390/ijms21061910 - 11 Mar 2020
Cited by 10 | Viewed by 5105
Abstract
Nuclear Receptor Subfamily 2 Group F Member 2 (NR2F2) is a member of the steroid/thyroid hormone receptor superfamily with a crucial role in organogenesis, angiogenesis, cardiovascular development and tumorigenesis. However, there is limited knowledge about the cistrome and transcriptome of NR2F2 in breast [...] Read more.
Nuclear Receptor Subfamily 2 Group F Member 2 (NR2F2) is a member of the steroid/thyroid hormone receptor superfamily with a crucial role in organogenesis, angiogenesis, cardiovascular development and tumorigenesis. However, there is limited knowledge about the cistrome and transcriptome of NR2F2 in breast cancer. In this study, we mapped the regulatory mechanism by NR2F2 using functional genomic methods. To investigate the clinical significance of NR2F2 in breast cancer, The Cancer Genome Atlas (TCGA) data were used. These results show that a high NR2F2 is associated with better survival of a specific subset of patients, namely those with luminal A breast cancer. Therefore, genome-wide NR2F2 and estrogen receptor alpha (ERα) binding sites were mapped in luminal A breast cancer cells using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), revealing that most NR2F2 overlap with ERα that are co-occupied by forkhead box A1 (FOXA1) and GATA binding protein 3 (GATA3) in active enhancer regions. NR2F2 overlaps with highly frequent ERα chromatin interactions, which are essential for the formation of ERα-bound super-enhancers. In the process of the transcriptome profiling of NR2F2-depleted breast cancer cells such differentially expressed genes have been identified that are involved in endocrine therapy resistance and are also ERα target genes. Overall, these findings demonstrate that the NR2F2 nuclear receptor has a key role in ERα-mediated transcription and it can offer a potential therapeutic target in patients with luminal A breast cancer. Full article
(This article belongs to the Special Issue Modifications of Molecular Structure and Interactions in Epigenome)
Show Figures

Figure 1

Back to TopTop