Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = forefoot bending stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 528 KiB  
Systematic Review
Advances in Badminton Footwear Design: A Systematic Review of Biomechanical and Performance Implications
by Meixi Pan, Zihao Chen, Dongxu Huang, Zixin Wu, Fengjiao Xue, Jorge Diaz-Cidoncha Garcia, Qing Yi and Siqin Shen
Appl. Sci. 2025, 15(13), 7066; https://doi.org/10.3390/app15137066 - 23 Jun 2025
Viewed by 512
Abstract
This systematic review, registered in PROSPERO (CRD42025101243), aimed to evaluate how specific badminton shoe design features influence lower-limb biomechanics, injury risk, and sport-specific performance. A comprehensive search in six databases yielded 445 studies, from which 10 met inclusion criteria after duplicate removal and [...] Read more.
This systematic review, registered in PROSPERO (CRD42025101243), aimed to evaluate how specific badminton shoe design features influence lower-limb biomechanics, injury risk, and sport-specific performance. A comprehensive search in six databases yielded 445 studies, from which 10 met inclusion criteria after duplicate removal and eligibility screening. The reviewed studies focused on modifications involving forefoot bending stiffness, torsional stiffness, lateral-wedge hardness, insole and midsole hardness, sole structure, and heel curvature. The most consistent biomechanical benefits were associated with moderate levels of forefoot and torsional stiffness (e.g., 60D) and rounded heel designs. Increased forefoot bending stiffness was associated with reduced foot torsion and knee loading during forward lunges. Torsional stiffness around 60D provided favorable ankle support and reduced knee abduction, suggesting potential protection against ligament strain. Rounded heels reduced vertical impact forces and promoted smoother knee–ankle coordination, especially in experienced athletes. Lateral-wedge designs improved movement efficiency by reducing contact time and enhancing joint stiffness. Harder midsoles, however, resulted in increased impact forces upon landing. Excessive stiffness in any component may restrict joint mobility and responsiveness. Studies included 127 male-dominated (aged 18–28) competitive athletes, assessing kinematics, impact forces, and coordination during sport-specific tasks. The reviewed studies predominantly involved male participants, with little attention to sex-specific biomechanical differences such as joint alignment and foot structure. Differences in testing methods and movement tasks further limited direct comparisons. Future research should explore real-game biomechanics, include diverse athlete populations, and investigate long-term adaptations. These efforts will contribute to the development of performance-enhancing, injury-reducing badminton shoes tailored to the unique demands of the sport. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

12 pages, 2115 KiB  
Article
Longitudinal Bending Stiffness Analysis of Composite Carbon Plates and Shoe Sole, Based on Three-Point Bending Test
by Yangyu Guo, Yunlong Jia, Yusen Wu and Xiaolan Zhu
Appl. Sci. 2025, 15(5), 2785; https://doi.org/10.3390/app15052785 - 5 Mar 2025
Viewed by 1631
Abstract
The forefoot longitudinal bending stiffness of shoe soles, measured through the widely used three-point bending test, is a key factor influencing running economy and lower-limb biomechanics. This study utilizes the finite element method to simulate three-point bending, examining the influence of different loading [...] Read more.
The forefoot longitudinal bending stiffness of shoe soles, measured through the widely used three-point bending test, is a key factor influencing running economy and lower-limb biomechanics. This study utilizes the finite element method to simulate three-point bending, examining the influence of different loading rates on stiffness and analyzing the impact of various plate thicknesses and forefoot curvature radii on the stiffness of plates and the ‘plate-sole’ system. The results indicate that within the same displacement range, varying the loading rates did not affect stiffness. However, increased thickness significantly enhanced both the stiffness of the plate and the ‘plate-sole’, while a larger curvature radius of the plate resulted in a modest 5–10% stiffness increase for both. To conclude, the present study provides a theoretical foundation for further exploring the mechanical properties of carbon plate configurations in footwear. Plate stiffness is affected by both thickness and curvature radius, with thickness having a greater impact. The same applies to the ‘plate-sole’. The stiffness of the ‘plate-sole’ is not a simple sum of the individual contributions from the shoe and the plate. This non-additive response emphasizes the significant role of the shoe material in altering the plate’s mechanical properties, which is an important consideration for optimizing shoe design. Full article
Show Figures

Figure 1

13 pages, 1493 KiB  
Article
Effects of Shoe Midfoot Bending Stiffness on Multi-Segment Foot Kinematics and Ground Reaction Force during Heel-Toe Running
by Ruiya Ma, Wing-Kai Lam, Rui Ding, Fan Yang and Feng Qu
Bioengineering 2022, 9(10), 520; https://doi.org/10.3390/bioengineering9100520 - 2 Oct 2022
Cited by 7 | Viewed by 3508
Abstract
We investigated how midfoot stiffness of running shoes influences foot segment kinematics and ground reaction force (GRF) during heel-toe running. Nineteen male rearfoot strike runners performed overground heel-toe running at 3.3 m/s when wearing shoes with different midfoot bending stiffnesses (low, medium, and [...] Read more.
We investigated how midfoot stiffness of running shoes influences foot segment kinematics and ground reaction force (GRF) during heel-toe running. Nineteen male rearfoot strike runners performed overground heel-toe running at 3.3 m/s when wearing shoes with different midfoot bending stiffnesses (low, medium, and high) in a randomized order. A synchronized motion capture system (200 Hz) and force plate (1000 Hz) were used to collect the foot-marker trajectories and GRF data. Foot kinematics, including rearfoot-lab, midfoot-rearfoot, forefoot-rearfoot, and forefoot-midfoot interactions, and kinetics, including GRF characteristics, were analyzed. Our results indicated that high midfoot stiffness shoes reduced the forefoot-rearfoot range of motion (mean ± SD; high stiffness, 7.8 ± 2.0°, low stiffness, 8.7 ± 2.1°; p < 0.05) and forefoot-midfoot range of motion (mean ± SD; high stiffness, 4.2 ± 1.1°, medium stiffness, 4.6 ± 0.9°; p < 0.05) in the frontal plane. No differences were found in the GRF characteristics among the shoe conditions. These findings suggest that an increase in midsole stiffness only in the midfoot region can reduce intersegmental foot medial-lateral movements during the stance phase of running. This may further decrease the tension of the foot muscles and tendons during prolonged exercises. Full article
(This article belongs to the Special Issue Biomechanics and Bionics in Sport and Exercise)
Show Figures

Figure 1

13 pages, 11398 KiB  
Article
Effect of the Construction of Carbon Fiber Plate Insert to Midsole on Running Performance
by Fengqin Fu, Ievgen Levadnyi, Jiayu Wang, Zhihao Xie, Gusztáv Fekete, Yuhui Cai and Yaodong Gu
Materials 2021, 14(18), 5156; https://doi.org/10.3390/ma14185156 - 8 Sep 2021
Cited by 13 | Viewed by 9305
Abstract
In this paper, to investigate the independent effect of the construction of the forefoot carbon-fiber plate inserted to the midsole on running biomechanics and finite element simulation, fifteen male marathon runners were arranged to run across a runway with embedded force plates at [...] Read more.
In this paper, to investigate the independent effect of the construction of the forefoot carbon-fiber plate inserted to the midsole on running biomechanics and finite element simulation, fifteen male marathon runners were arranged to run across a runway with embedded force plates at two specific running speeds (fast-speed: 4.81 ± 0.32 m/s, slow-speed: 3.97 ± 0.19 m/s) with two different experimental shoes (a segmented forefoot plate construction (SFC), and a full forefoot plate construction (FFC)), simulating the different pressure distributions, energy return, and stiffness during bending in the forefoot region between the SFC and FFC inserted to midsole. Kinetics and joint mechanics were analyzed. The results showed that the footwear with SFC significantly increased the peak metatarsophalangeal joint (MTPJ) plantarflexion velocity and positive work at the knee joint compared to the footwear with FFC. The results about finite element simulation showed a reduced maximum pressure on the midsole; meanwhile, not significantly affected was the longitudinal bending stiffness and energy return with the SFC compared to the FFC. The results can be used for the design of marathon running shoes, because changing the full carbon fiber plate to segment carbon fiber plate induced some biomechanical transformation but did not significantly affect the running performance, what is more, reducing the peak pressure of the carbon plate to the midsole by cutting the forefoot area of the carbon fiber plate could be beneficial from a long-distance running perspective for manufacturers. Full article
(This article belongs to the Special Issue Feature Paper in Section Carbon Materials)
Show Figures

Figure 1

7 pages, 909 KiB  
Proceeding Paper
How to Assess Repeatability and Reproducibility of a Mechanical Test? An Example for Sports Engineers
by Dominik Krumm, Stefan Schwanitz and Stephan Odenwald
Proceedings 2020, 49(1), 122; https://doi.org/10.3390/proceedings2020049122 - 15 Jun 2020
Cited by 1 | Viewed by 2804
Abstract
Several sources of variation can affect the performance of a mechanical test. Hence, the measurement system performance should be assessed. The gage repeatability and reproducibility study is a method used to assess and quantify the variation of a mechanical test. Since it seems [...] Read more.
Several sources of variation can affect the performance of a mechanical test. Hence, the measurement system performance should be assessed. The gage repeatability and reproducibility study is a method used to assess and quantify the variation of a mechanical test. Since it seems that this method has not yet found its way into the field of sports engineering, this paper promotes its application by demonstrating a practical example based on a current problem in sports shoe development. In detail, a novel mechanical simulation to determine the forefoot bending stiffness of athletic footwear during plantar flexion movement was developed and its quality assessed. The ANOVA Gage R&R study was performed based on 64 randomized trials of eight footwear samples assessed by two appraisers. The mechanical test was evaluated as acceptable for the desired application and the resolution was quantified to be 0.04 Nm/°. Full article
Show Figures

Figure 1

15 pages, 3604 KiB  
Article
Development of a Bendable Outsole Biaxial Ground Reaction Force Measurement System
by Junghoon Park, Sangjoon Jonathan Kim, Youngjin Na, Yeongjin Kim and Jung Kim
Sensors 2019, 19(11), 2641; https://doi.org/10.3390/s19112641 - 11 Jun 2019
Cited by 12 | Viewed by 5212
Abstract
Wearable ground reaction force (GRF) measurement systems make it possible to measure the GRF in any environment, unlike a commercial force plate. When performing kinetic analysis with the GRF, measurement of multiaxial GRF is important for evaluating forward and lateral motion during natural [...] Read more.
Wearable ground reaction force (GRF) measurement systems make it possible to measure the GRF in any environment, unlike a commercial force plate. When performing kinetic analysis with the GRF, measurement of multiaxial GRF is important for evaluating forward and lateral motion during natural gait. In this paper, we propose a bendable GRF measurement system that can measure biaxial (vertical and anterior-posterior) GRF without interrupting the natural gait. Eight custom small biaxial force sensors based on an optical sensing mechanism were installed in the proposed system. The interference between two axes on the custom sensor was minimized by the independent application of a cantilever structure for the two axes, and the hysteresis and repeatability of the custom sensor were investigated. After developing the system by the installation of force sensors, we found that the degree of flexibility of the developed system was comparable to that of regular shoes by investigating the forefoot bending stiffness. Finally, we compared vertical GRF (vGRF) and anterior-posterior GRF (apGRF) measured from the developed system and force plate at the same time when the six subjects walked, ran, and jumped on the force plate to evaluate the performance of the GRF measurement system. Full article
(This article belongs to the Special Issue Wearable Sensors and Devices for Healthcare Applications)
Show Figures

Figure 1

Back to TopTop