Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = floating particulate matter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 16256 KiB  
Article
Study on the Influence of Chord Length and Frequency of Hydrofoil Device on the Discharge Characteristics of Floating Matter in Raceway Aquaculture
by Ertian Hua, Tao Wang, Mingwang Xiang, Caiju Lu, Yabo Song and Qizong Sun
J. Mar. Sci. Eng. 2024, 12(9), 1584; https://doi.org/10.3390/jmse12091584 - 8 Sep 2024
Viewed by 1078
Abstract
To investigate the influence of the chord length and frequency of an oscillating hydrofoil device on the discharge characteristics of floating particulate matter, in this study, we take raceway aquaculture as an example and systematically compare and analyze the flow field characteristics of [...] Read more.
To investigate the influence of the chord length and frequency of an oscillating hydrofoil device on the discharge characteristics of floating particulate matter, in this study, we take raceway aquaculture as an example and systematically compare and analyze the flow field characteristics of the hydrofoil device with different chord lengths and frequencies, as well as the sewage discharge performance of the raceway based on Computational Fluid Dynamics (CFD). The results indicate that in the particulate matter discharge process of raceway aquaculture, when the chord length and motion frequency of the hydrofoil device are 0.1 W (W is the width of the raceway) and 1.0 Hz, respectively, the anti-Karman vortex streets produced by the hydrofoil device are less affected by the wall, the flow field is the most uniform, the particulate matter discharge performance is the best, and the final floating particulate matter discharge rate reaches up to 99.09%. Adjusting the chord length of the hydrofoil can effectively ameliorate flow field reflux issues, enhancing the uniformity and flow performance of the flow field. When the chord length is 0.1 W, the uniformity of the flow field is optimal. When the chord length is 0.2 W, the flow performance of the flow field is superior. Increasing the frequency enhances the flow performance of the flow field, with an average increase of 0.1 Hz in motion frequency leading to a 19.42% improvement in the average velocity at the outlet. Based on this, we recommend the use of a hydrofoil device with a chord length of 0.1 W and a motion frequency of 1.0 Hz in the raceway aquaculture system to achieve optimal particulate matter discharge performance, providing a theoretical basis and practical guidance for using hydrofoil devices to improve the efficiency of floating particulate matter treatment in raceway aquaculture environments. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

26 pages, 9079 KiB  
Article
Dissolved Carbon Concentrations and Emission Fluxes in Rivers and Lakes of Central Asia (Sayan–Altai Mountain Region, Tyva)
by Arisiya A. Byzaakay, Larisa G. Kolesnichenko, Iury Ia. Kolesnichenko, Aldynay O. Khovalyg, Tatyana V. Raudina, Anatoly S. Prokushkin, Inna V. Lushchaeva, Zoia N. Kvasnikova, Sergey N. Vorobyev, Oleg S. Pokrovsky and Sergey Kirpotin
Water 2023, 15(19), 3411; https://doi.org/10.3390/w15193411 - 28 Sep 2023
Cited by 3 | Viewed by 2515
Abstract
The carbon (C) cycle in inland waters, including carbon concentrations in and carbon dioxide (CO2) emissions from water surfaces, are at the forefront of biogeochemical studies, especially in regions strongly impacted by ongoing climate change. Towards a better understanding of C [...] Read more.
The carbon (C) cycle in inland waters, including carbon concentrations in and carbon dioxide (CO2) emissions from water surfaces, are at the forefront of biogeochemical studies, especially in regions strongly impacted by ongoing climate change. Towards a better understanding of C storage, transport and emission in Central Asian mountain regions, an area of knowledge that has been extremely poorly studied until now, here, we carried out systematic measurements of dissolved C and CO2 emissions in rivers and lakes located along a macrotransect of various natural landscapes in the Sayan–Altai mountain region, from the high mountains of the Western Sayan in the northwest of Tyva to the arid (dry) steppes and semideserts in the intermountain basins in the southeast of Tyva on the border with Mongolia. New data on major hydrochemical parameters and CO2 fluxes (fCO2) gathered by floating chambers and dissolved organic and inorganic carbon (DOC and DIC, respectively) concentrations collected over the four main hydrological seasons allowed us to assess the current C biogeochemical status of these water bodies in order to judge possible future changes under climate warming. We further tested the impact of permafrost, river watershed size, lake area and climate parameters as well as ‘internal’ biogeochemical drivers (pH, mineralization, organic matter quality and bacterial population) on CO2 concentration and emissions in lakes and rivers of this region and compared them with available data from other subarctic and mountain settings. We found strong environmental control of the CO2 pattern in the studied water bodies, with thermokarst lakes being drastically different from other lakes. In freshwater lakes, pCO2 negatively correlated with O2, whereas the water temperature exerted a positive impact on pCO2 in large rivers. Overall, the large complexity of counteracting external and internal drivers of CO2 exchange between the water surfaces and the atmosphere (CO2-rich underground DIC influx and lateral soil and subsurface water; CO2 production in the water column due to dissolved and particulate OC biodegradation; CO2 uptake by aquatic biota) precluded establishing simple causalities between a single environmental parameter and the fCO2 of rivers and lakes. The season-averaged CO2 emission flux from the rivers of Tyva measured in this study was comparable, with some uncertainty, to the C uptake fluxes from terrestrial ecosystems of the region, which were assessed in other works. Full article
(This article belongs to the Special Issue Recent Progress in CO2 Emission from the World’s Rivers)
Show Figures

Figure 1

22 pages, 4036 KiB  
Article
Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment
by Marcel Rusca, Tiberiu Rusu, Simona Elena Avram, Doina Prodan, Gertrud Alexandra Paltinean, Miuta Rafila Filip, Irina Ciotlaus, Petru Pascuta, Tudor Andrei Rusu and Ioan Petean
Atmosphere 2023, 14(5), 862; https://doi.org/10.3390/atmos14050862 - 11 May 2023
Cited by 16 | Viewed by 3296
Abstract
Vehicle traffic pollution requires complex physicochemical analysis besides emission level measuring. The current study is focused on two campaigns of emissions measurements held in May and September 2019 in Alba Iulia City, Romania. There was found a significant excess of PM2.5 for [...] Read more.
Vehicle traffic pollution requires complex physicochemical analysis besides emission level measuring. The current study is focused on two campaigns of emissions measurements held in May and September 2019 in Alba Iulia City, Romania. There was found a significant excess of PM2.5 for all measuring points and PM10 for the most circulated points during May, along with significant VOC and CO2 emissions. September measurements reveal threshold excess for all PM along with increased values for VOC and CO2 emissions. These are the consequences of the complex environmental interaction of the traffic. Street dust and air-suspended particle samples were collected and analyzed to evidence the PM2.5 and PM10 sources. Physicochemical investigation reveals highly mineralized particulate matter: PM2.5 fractions within air-suspended particle samples predominantly contain Muscovite, Kaolinite, and traces of Quartz and Calcite, while PM10 fractions within air-suspended particle samples predominantly contain Quartz and Calcite. These mineral fractions originate in street dust and are suspended in the atmosphere due to the vehicles’ circulation. A significant amount of soot was found as small micro-sized clusters in PM2.5 and fine micro-spots attached over PM10 particles, as observed by Mineralogical Optical Microscopy (MOM) and Fourier Transformed Infrared Spectroscopy (FTIR). GC-MS analysis found over 53 volatile compounds on the investigated floating particles that are related to the combustion gases, such as saturated alkanes, cycloalkanes, esters, and aromatic hydrocarbons. It proves a VOC contamination of the measured particulate matters that make them more hazardous for the health. Viable strategies for vehicle traffic-related pollutants mitigation would be reducing the street dust occurrence and usage of modern catalyst filters of the combustion gas exhausting system. Full article
(This article belongs to the Special Issue Road Emission: Recent Trends, Current Progress and Future Direction)
Show Figures

Figure 1

11 pages, 3083 KiB  
Data Descriptor
Dataset AqADAPT: Physicochemical Parameters, Vibrio Abundance, and Species Determination in Water Columns of Two Adriatic Sea Aquaculture Sites
by Marija Purgar, Damir Kapetanović, Ana Gavrilović, Branimir K. Hackenberger, Božidar Kurtović, Ines Haberle, Jadranka Pečar Ilić, Sunčana Geček, Domagoj K. Hackenberger, Tamara Djerdj, Lav Bavčević, Jakov Žunić, Fran Barac, Zvjezdana Šoštarić Vulić and Tin Klanjšček
Data 2023, 8(3), 55; https://doi.org/10.3390/data8030055 - 3 Mar 2023
Cited by 1 | Viewed by 2598
Abstract
Aquaculture provides more than 50% of all seafood for human consumption. This important industrial sector is already under pressure from climate-change-induced shifts in water column temperature, nutrient loads, precipitation patterns, microbial community composition, and ocean acidification, all affecting fish welfare. Disease-related risks are [...] Read more.
Aquaculture provides more than 50% of all seafood for human consumption. This important industrial sector is already under pressure from climate-change-induced shifts in water column temperature, nutrient loads, precipitation patterns, microbial community composition, and ocean acidification, all affecting fish welfare. Disease-related risks are also shifting with important implications for risk from vibriosis, a disease that can lead to massive economic losses. Adaptation to these pressures pose numerous challenges for aquaculture producers, policy makers, and researchers. The dataset AqADAPT aims to help the development of management and adaptation tools by providing (i) measurements of physicochemical (temperature, salinity, total dissolved solids, pH, dissolved oxygen, conductivity, transparency, total nitrogen, ammonia, nitrate, nitrite, total phosphorus, total particulate matter, particulate organic matter, and particulate inorganic matter) and microbiological (heterotrophic (total) bacteria, fecal indicators, and Vibrio abundance) parameters of seawater and (ii) biochemical determination of culturable bacteria in two locations near floating cage fish farms in the Adriatic Sea. Water sampling was conducted seasonally in two fish farms (Cres and Vrgada) and corresponding reference (control) sites between 2019 and 2021 of four vertical layers for a total of 108 observations: the surface, 6 m, 12 m, and the bottom. Full article
Show Figures

Figure 1

16 pages, 3815 KiB  
Article
Evaluation of a Modular Filter Concept to Reduce Microplastics and Other Solids from Urban Stormwater Runoff
by Daniel Venghaus, Johannes Wolfgang Neupert and Matthias Barjenbruch
Water 2023, 15(3), 506; https://doi.org/10.3390/w15030506 - 27 Jan 2023
Cited by 5 | Viewed by 3418
Abstract
This paper describes an innovative Decentralized Technical Sustainable Drainage System (SuDS) concept, which is based on technical devices, such as sieves, sedimentation barriers, floating barriers and a magnetic module, which addresses, mainly, the fine matter. The SuDS is designed as a retrofit system [...] Read more.
This paper describes an innovative Decentralized Technical Sustainable Drainage System (SuDS) concept, which is based on technical devices, such as sieves, sedimentation barriers, floating barriers and a magnetic module, which addresses, mainly, the fine matter. The SuDS is designed as a retrofit system so that no costly and time-consuming conversion measures are necessary. Due to the possibility of free configurability of individual modules in the three levels, road, gully and drain, a novel solution approach is presented, which is not available on the market, for a reduction in solids in general and microplastics in particular. The retention performance of selected modules and their combinations is demonstrated by means of bench tests according to the test procedure of the German Institute for Construction Engineering (DIBt) for the evaluation of decentralized treatment systems. Four different rain intensities, from light to medium up to heavy rain, are charged to the filter modules. Collected and fractionated road-deposited sediment (RDS) was selected as the test substance (10 kg). Additional tests with tyre powder, PE pellets, cigarette butts and candy wrappers helped to make clear the filter process of the particulate matter. The retention performance was determined by the mass balance between the defined dosage and at the outlet. For this purpose, the total volume flow of the effluent was passed over a stainless-steel sieve with a diameter of 600 mm and a mesh size of 20 µm. For the test substance, RDS retention rates up to 97% were measured. Very fine matter, particularly, was technically challenging to obtain; <63 µm up to 66% could be retained by the filter modules. Modules in the road space, such as porous asphalt or additional retention spaces, in the area of the curb as well as direct infiltration in the road drainage shaft are theoretically described and discussed. The outlook also addresses the potential of an intelligent network to reduce the input of pollution from urban stormwater runoff. Full article
(This article belongs to the Special Issue Innovative Methods and Applications of Stormwater Management)
Show Figures

Figure 1

16 pages, 2539 KiB  
Article
Mercury Sources, Emissions, Distribution and Bioavailability along an Estuarine Gradient under Semiarid Conditions in Northeast Brazil
by Victor Lacerda Moura and Luiz Drude de Lacerda
Int. J. Environ. Res. Public Health 2022, 19(24), 17092; https://doi.org/10.3390/ijerph192417092 - 19 Dec 2022
Cited by 10 | Viewed by 2394
Abstract
In the semiarid coast of northeast Brazil, climate change and changes in land use in drainage basins affect river hydrodynamics and hydrochemistry, modifying the estuarine environment and its biogeochemistry and increasing the mobilization of mercury (Hg). This is particularly relevant to the largest [...] Read more.
In the semiarid coast of northeast Brazil, climate change and changes in land use in drainage basins affect river hydrodynamics and hydrochemistry, modifying the estuarine environment and its biogeochemistry and increasing the mobilization of mercury (Hg). This is particularly relevant to the largest semiarid-encroached basin of the region, the Jaguaribe River. Major Hg sources to the Jaguaribe estuary are solid waste disposal, sewage and shrimp farming, the latter emitting effluents directly into the estuary. Total annual emission reaches 300 kg. In that estuary, the distribution of Hg in sediment and suspended particulate matter decreases seaward, whereas dissolved Hg concentrations increase sharply seaward, suggesting higher mobilization at the marine-influenced, mangrove-dominated portion of the estuary, mostly in the dry season. Concentrations of Hg in rooted macrophytes respond to Hg concentrations in sediment, being higher in the fluvial endmember of the estuary, whereas in floating aquatic macrophytes, Hg concentrations followed dissolved Hg concentrations in water and were also higher in the dry season. Animals (fish and crustaceans) also showed higher concentrations and bioaccumulation in the marine-influenced portion of the estuary. The variability of Hg concentrations in plants and sediments agrees with continental sources of Hg. However, Hg fractionation in water and contents in the animals respond to higher Hg availability in the marine-dominated end of the estuary. The results suggest that the impact of anthropogenic sources on Hg bioavailability is modulated by regional and global environmental changes and results from a conjunction of biological, ecological and hydrological characteristics. Finally, increasing aridity due to global warming, observed in northeast Brazil, as well as in other semiarid littorals worldwide, in addition to increased water overuse, augment Hg bioavailability and environmental risk and exposure of the local biota and the tradition of human populations exploiting the estuary’s biological resources. Full article
Show Figures

Figure 1

11 pages, 2372 KiB  
Article
Flexible and Lightweight Carbon Nanotube Composite Filter for Particulate Matter Air Filtration
by Megha Chitranshi, Daniel Rui Chen, Peter Kosel, Marc Cahay and Mark Schulz
Nanomaterials 2022, 12(22), 4094; https://doi.org/10.3390/nano12224094 - 21 Nov 2022
Cited by 3 | Viewed by 3321
Abstract
Particulate Matter (PM) has become an important source of air pollution. We proposed a flexible and lightweight carbon nanotube (CNT) composite air filter for PM removal. The developed CNT filtering layers were fabricated using a floating catalyst chemical vapor deposition (FC-CVD) synthesis process [...] Read more.
Particulate Matter (PM) has become an important source of air pollution. We proposed a flexible and lightweight carbon nanotube (CNT) composite air filter for PM removal. The developed CNT filtering layers were fabricated using a floating catalyst chemical vapor deposition (FC-CVD) synthesis process and then combined with conventional filter fabrics to make a composite air filter. Filtration performance for CNT filtering layer alone and composited with other conventional filter fabrics for particles size 0.3 μm to 2.5 μm was investigated in this study. The CNT composite filter is highly hydrophobic, making it suitable for humid environments. The CNT composite filter with two layers of tissue CNT performed best and achieved a filtration efficiency over 90% with a modest pressure drop of ~290 Pa for a particle size of 2.5 μm. This CNT composite filter was tested over multiple cycles to ensure its reusability. The developed filter is very light weight and flexible and can be incorporated into textiles for wearable applications or used as a room filter. Full article
(This article belongs to the Special Issue Functional Carbon-Based Nanocomposite and Applications)
Show Figures

Figure 1

21 pages, 7871 KiB  
Article
C, N, and P Mass Balances in the Bottom Seawater–Surface Sediment Interface in the Reducing Environment due to Anoxic Water of Gamak Bay, Korea
by Huiho Jeong, Yoonja Kang and Hyeonseo Cho
Water 2022, 14(14), 2244; https://doi.org/10.3390/w14142244 - 17 Jul 2022
Cited by 2 | Viewed by 4745
Abstract
Current mass balances of C, N, and P were estimated using a model (Fluxin = Fluxout + ΔFlux) from Gamak Bay, Korea, in August 2017, where eutrophication and reducing conditions are prevalent. To examine the current fluxes of particulate organic [...] Read more.
Current mass balances of C, N, and P were estimated using a model (Fluxin = Fluxout + ΔFlux) from Gamak Bay, Korea, in August 2017, where eutrophication and reducing conditions are prevalent. To examine the current fluxes of particulate organic carbon (POC), nitrogen (PON), and phosphorus (POP), sinking and re-floating sediment traps were deployed, a sediment oxygen demand (SOD) chamber experiment and ex-situ nutrient incubation experiment were conducted, and Fick’s first law of diffusion was applied. The principal component analysis and cluster analysis were performed to identify the three groups of water masses based on the characteristics of the bay, including the effects of the reducing environment due to the anoxic water mass using 14 bottom water quality parameters. In the reducing environment (sampling point GA4), the SOD20 flux was 3047.2 mg O2/m2/d. Additionally, the net sinking POC flux was 861.0 mg C/m2/d, while 131.8% of the net sinking POC flux (1134.5 mg C/m2/d) was removed toward the overlying water. This indicates that the organic matter that had been deposited was decomposed as a flux of 273.6 mg C/m2/d. The net sinking PON flux was 187.9 mg N/m2/d, whereas 15.8% of the net sinking PON flux was eluted, and 84.2% remained in the surface sediments. The dissolved inorganic nitrogen (DIN) elution flux from the surface sediments consisted of NH4+ elution (33.7 mg N/m2/d) and NOx elution (4.1 mg N/m2/d) fluxes. Despite the net sinking POP flux being 26.0 mg P/m2/d, the 47.7 mg P/m2/d of DIP elution flux (179.5% of the net sinking POP flux) was eluted to the overlying water. Similar to C mass balance, the additional elution flux occurred. Therefore, severe eutrophication (16.5 of the Okaichi eutrophication index) with the lowest N:P ratio (2.6) in GA4 was noted. This indicates that not only the freshly exported organic matter to the surface sediments but also the biochemical processes under anoxic conditions played an essential role as a remarkable nutrient source–particularly P–for eutrophication in Gamak Bay, Korea. Full article
(This article belongs to the Special Issue Eutrophication Management in Coastal Zones for Better Water Quality)
Show Figures

Figure 1

12 pages, 9357 KiB  
Article
Effective Purification of Eutrophic Wastewater from the Beverage Industry by Microbubbles
by Kimio Fukami, Tatsuro Oogi, Kohtaro Motomura, Tomoka Morita, Masaoki Sakamoto and Takashi Hata
Water 2021, 13(24), 3661; https://doi.org/10.3390/w13243661 - 20 Dec 2021
Cited by 5 | Viewed by 3943
Abstract
Beverage industries often discharge large amounts of organic matter with their wastewater. Purification of the effluent is their obligation, but it is nontrivial. Among wastewater components, removal of dissolved organic matter often requires much effort. Therefore, a special effective technique must be considered. [...] Read more.
Beverage industries often discharge large amounts of organic matter with their wastewater. Purification of the effluent is their obligation, but it is nontrivial. Among wastewater components, removal of dissolved organic matter often requires much effort. Therefore, a special effective technique must be considered. Microbubbles (1–100 μm) have several special properties of relevance to wastewater treatment. In this study, the effectiveness of microbubbles for treating and purifying beverage wastewater was evaluated. Orange juice, lactic acid drink, and milk were used as model substrates of dissolved organic matter, and degradation experiments were carried out. Rates of air supply by microbubbles were 0.05% (air/wastewater) min−1. Results indicated that the total organic carbon (TOC) in an experimental vessel containing milk (high nitrogen content) decreased by 93.1% from 11.0 to 0.76 g during a 10-day incubation. The TOC of lactic acid drink (least nitrogen content) decreased by 66.3%, from 15.6 to 5.26 g, and the TOC of orange juice (medium nitrogen content) decreased by 82.7%, from 14.8 to 2.55 g. Large amounts of particulate organic matter floated on the water surface in the milk with microbubbles and were removed easily, while almost no floating materials were observed in the orange juice and lactic acid drink. In contrast, in the macrobubble treatment (diameter 0.1 to 2 mm), only 37.0% of TOC in the milk was removed. Whereas the macrobubble treatments were anaerobic throughout the incubations, the microbubble treatments returned to aerobic conditions quickly, and brought 10 times greater bacterial abundances (>108 cells mL−1). These results suggest that microbubbles are much superior to macrobubbles in supplying oxygen and accelerating the growth of aerobic bacteria, and that wastewater containing more nitrogenous compounds was purified more effectively than that with less nitrogen by microbial degradation and floating separation. Full article
Show Figures

Graphical abstract

16 pages, 5332 KiB  
Article
Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea
by Tae-Han Kim, Boo-Hun Choi, Moon-Sung Kang and Han-Ju Lee
Atmosphere 2021, 12(11), 1463; https://doi.org/10.3390/atmos12111463 - 5 Nov 2021
Cited by 6 | Viewed by 2993
Abstract
Recently, metallic particulate pollutants floating underground have been reported to negatively affect the human body. Thus, there is an urgent need for a public health policy pertaining to the air quality in subway stations. In this study, we investigated whether a vegetation biofilter [...] Read more.
Recently, metallic particulate pollutants floating underground have been reported to negatively affect the human body. Thus, there is an urgent need for a public health policy pertaining to the air quality in subway stations. In this study, we investigated whether a vegetation biofilter is effective in reducing metal particle contaminants, especially iron oxide. After selecting a subway station, a vegetation biofilter system was installed, and samples were collected three times, at three intake areas and one exhaust area. The average weight ratio of the detected elements was calculated. The iron oxide reduction effect was evaluated using the Wilcoxon signed rank test. In the return air, C, O, and Fe were detected at 64.9, 27.3, and 5.2 wt.%, respectively; in the supply air, C, O, and Fe were detected at 67.2, 30.4, and 0.7 wt.%, respectively. The difference in the average Fe weight ratio was statistically significant. Air quality has a considerable effect on human health. We confirmed the possibility of reducing Fe in particulate matter using biofilters. However, we could not confirm whether the air quality was improved enough to not have a negative effect on the human body. This should be elucidated through follow-up studies. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

24 pages, 8023 KiB  
Article
Unmanned Aerial Vehicle Observations of the Vertical Distribution of Particulate Matter in the Surface Layer of the Taklimakan Desert in China
by Lili Jin, Qing He, Hong Jiang, Junan Xiao, Quanwei Zhao, Sasa Zhou, Zhenjie Li and Jiawei Zhao
Atmosphere 2020, 11(9), 980; https://doi.org/10.3390/atmos11090980 - 13 Sep 2020
Cited by 10 | Viewed by 2886
Abstract
Field observations made with unmanned aerial vehicles of the particulate matter (PM) concentration from the ground to a height of 500 m were conducted at Xiaotang and Tazhong in the Taklimakan Desert (TD), China, from 7 to 15 November 2019. The vertical structures [...] Read more.
Field observations made with unmanned aerial vehicles of the particulate matter (PM) concentration from the ground to a height of 500 m were conducted at Xiaotang and Tazhong in the Taklimakan Desert (TD), China, from 7 to 15 November 2019. The vertical structures of the PM concentrations were studied. Pulsed lidar observations showed that dust aerosols in the TD can reach heights of 4 km. Within 500 m above the ground, the PM1.0, PM2.5, and PM10 concentrations were <100, <201, and <764 µg∙m−3, respectively, in the TD. On days containing sand-blowing periods (e.g., at 18:00 on 11 November), the PM1.0, PM2.5, and PM10 concentrations were 10–17.7 times higher than on clear days. The northern margin of the TD (Xiaotang) was dominated by fine particles, while the hinterland (Tazhong) was dominated by coarse particles, because there was sparse vegetation around Xiaotang and the surface was sand and clay, while there was no vegetation around Tazhong and the surface was sand. During floating dust periods, the boundary layer was dominated by fine particles. The average PM1.0/PM2.5 ratios were 0.25–0.65 and 0.40–0.80 at Tazhong and Xiaotang, respectively, while, during sand blowing periods, these ratios were 0.40–0.55 and 0.40–0.45, respectively. The critical condition in the atmospheric boundary layer for PM concentration was revealed with the enhanced momentum flux and sensible heat flux up to 0.52 kg∙m−1∙s−2, 0.69 m∙s−1, and 6.7 W∙m2, respectively, and the low mixed layer was high in the lower atmosphere. Full article
(This article belongs to the Special Issue Desert-Dust Aerosols in the Earth System)
Show Figures

Figure 1

23 pages, 2396 KiB  
Article
The Impact of PM10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea
by Juwon Chung, Seung-Nam Kim and Hyungkyoo Kim
Int. J. Environ. Res. Public Health 2019, 16(23), 4833; https://doi.org/10.3390/ijerph16234833 - 1 Dec 2019
Cited by 17 | Viewed by 4017
Abstract
Although many studies have revealed that both air quality and walking activity are dominant contributors to public health, little is known about the relationship between them. Moreover, previous studies on this subject have given little consideration to the day-to-day atmospheric conditions and floating [...] Read more.
Although many studies have revealed that both air quality and walking activity are dominant contributors to public health, little is known about the relationship between them. Moreover, previous studies on this subject have given little consideration to the day-to-day atmospheric conditions and floating populations of surrounding areas even though most pedestrian count surveys are not conducted on a single day. Against this backdrop, using the 2015 Pedestrian Volume Survey data and quasi-real-time weather, air quality, and transit ridership data in Seoul, this study investigates the relationship between particulate matter (PM)10 and pedestrian street volumes empirically. The regression results suggest that PM10 concentration determines people’s intention to walk and affects the volume of street-level pedestrians. The three regression models, which adopted different spatial aggregation units of air quality, demonstrated that PM10 elasticity of pedestrian volume is the largest in the borough-level (the smallest spatial unit of air quality alert) model. This means that people react to the most accurate information they can access, implying that air quality information should be provided in smaller spatial units for public health. Thus, strengthening air quality warning standards of PM is an effective measure for enhancing public health. Full article
Show Figures

Figure 1

17 pages, 1152 KiB  
Article
Impact of PM2.5 on Second Birth Intentions of China’s Floating Population in a Low Fertility Context
by Wei Guo, Yan Tan, Xican Yin and Zhongwei Sun
Int. J. Environ. Res. Public Health 2019, 16(21), 4293; https://doi.org/10.3390/ijerph16214293 - 5 Nov 2019
Cited by 23 | Viewed by 4164
Abstract
The total fertility rate of the Chinese population has declined dramatically over the last three decades. Research has substantiated the causal link between particulate matter (PM) and adverse health effects. However, the impact of PM on the birth intentions or fertility behavior of [...] Read more.
The total fertility rate of the Chinese population has declined dramatically over the last three decades. Research has substantiated the causal link between particulate matter (PM) and adverse health effects. However, the impact of PM on the birth intentions or fertility behavior of the childbearing population remains understudied. The paper analyzes the impact of PM2.5 concentration (a mixture of extremely small solid particles and liquid droplets found in the air) on the second birth intentions of the Chinese floating population. We used urban migrant population matching data at the prefectural level for the analysis. The unique datasets were derived from the Chinese Floating Population Dynamic Survey in 2014 administered by the National Health Commission, the National Prefecture-level City Matching Data administered by the National Bureau of Statistics of China, and the air pollution index PM2.5 collected by the Green Peace Organization. The results show that PM2.5 concentration has a negative impact on the second birth intentions of the floating population. This impact exhibits marked regional heterogeneity: the desire for a second birth across migrant groups living in south China decreases if PM2.5 concentration goes up, while migrants coming from, and living in, north China show strong intentions to have a second birth despite an increase in PM2.5 concentration in northern cities. The results have direct implications for the Chinese government at various levels to play a vital role in making and implementing environmental policies on the mitigation of smog to effectively safeguard the health of individuals and communities and potentially raise China’s fertility rate. Full article
Show Figures

Figure 1

21 pages, 707 KiB  
Article
Current Status, Challenges and Resilient Response to Air Pollution in Urban Subway
by Weiji Zhang, Han Zhao, Ang Zhao, Jiaqiao Lin and Rui Zhou
Atmosphere 2019, 10(8), 472; https://doi.org/10.3390/atmos10080472 - 16 Aug 2019
Cited by 7 | Viewed by 5509
Abstract
Subway air pollution mainly refers to inhalable particulate matter (PM) pollution, organic pollution, and microbial pollution. Based on the investigation and calculation of the existing researches, this paper summarizes the sources of air pollutants, chemical compositions, and driving factors of PM variations in [...] Read more.
Subway air pollution mainly refers to inhalable particulate matter (PM) pollution, organic pollution, and microbial pollution. Based on the investigation and calculation of the existing researches, this paper summarizes the sources of air pollutants, chemical compositions, and driving factors of PM variations in subway. It evaluates the toxicity and health risks of pollutants. In this paper, the problems and challenges during the deployment of air pollution governance are discussed. Results show that the global PM compliance rate of subway is about 30%. Subway air pollution is endogenous, which means that pollutants mainly come from mechanical wear and building materials erosions. Particles are mainly metal particles, black carbon, and floating dust. The health risks of some chemical elements in the subway have reached critical levels. The variations of PM concentrations show spatial-temporal characteristics, which are mainly controlled by train age, brakes types, and environmental control systems. The authors then analyze the dynamics of interactions among government, companies and public during the air pollution governance by adding the following questions: (a) who pays the bill; (b) how to evaluate the cost-effectiveness of policies; (c) how the public moves from risk perception to actions; (d) how to develop clean air technology better so as to ultimately incentivize stakeholders and to facilitate the implementation of subway clean air programme in a resilient mode. Full article
Show Figures

Figure 1

Back to TopTop