Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Site
2.2. Experimental Environment and Conditions
2.2.1. IAQ Station
2.2.2. Selection of Mockup Construction Location
2.2.3. Vegetation Biofilter System
2.2.4. Experimental Method
2.2.5. Sample and Data Analyses
3. Results
3.1. Air Quality Analysis in the Mockup Construction Area
3.2. Particulate Pollutant Composition Analysis
3.2.1. Return Air (RA)
3.2.2. Supply Air (SA)
3.3. Statistical Analysis
3.4. Comprehensive Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer. Air Pollution and Cancer; WHO: Geneva, Swiss, 2013; pp. 7–8.
- Kim, Y. Particulate Matter in Subway Stations, Strictly Controlled. A Report from the Ministry of Environment 2018. Available online: http://www.me.go.kr/home/web/board/read.do?boardMasterId=1&boardId=850180&menuId=286 (accessed on 29 July 2021).
- Karlsson, H.L.; Nilsson, L.; Möller, L. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem. Res. Toxicol. 2005, 18, 19–23. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Ljungman, A.G.; Lindbom, J.; Möller, L. Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Toxicol. Lett. 2006, 165, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Kim, B.; Ryu, J.; Maskey, S.; Kim, J.; Sohn, J.; Ro, C. Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis. Atmos. Environ. 2010, 44, 2287–2293. [Google Scholar] [CrossRef]
- Liu, W. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 2006, 102, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Penn, S.G.; He, L.; Natan, M.J. Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 2003, 7, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Gaharwar, U.S.; Meena, R.; Rajamani, P. Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J. Appl. Toxicol. 2017, 37, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Könczöl, M.; Ebeling, S.; Goldenberg, E.; Treude, F.; Gminski, R.; Gieré, R.; Grobéty, B.; Rothen-Rutishauser, B.; Merfort, I.; Mersch-Sundermann, V. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: Role of ROS, JNK, and NF-κB. Chem. Res. Toxicol. 2011, 24, 1460–1475. [Google Scholar] [CrossRef]
- Williams, L.J.; Zosky, G.R. The inflammatory effect of iron oxide and silica particles on lung epithelial cells. Lung 2019, 197, 199–207. [Google Scholar] [CrossRef]
- Roy, D.; Ahn, S.H.; Lee, T.K.; Seo, Y.-C.; Park, J. Cancer and non-cancer risk associated with PM10-bound metals in subways. Transp. Res. D Transp. Environ. 2020, 89, 102618. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, G.; Su, L.; Wang, L.; Yang, Z.; Jiang, J.; Liu, S.; Jiang, G. Evaluation of the biological fate and the transport through biological barriers of nanosilver in mice. Curr. Pharm. Des. 2013, 19, 6691–6697. [Google Scholar] [CrossRef]
- Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, Q.; Hautot, D.; Khan, N.; Dobson, J. Increased levels of magnetic iron compounds in Alzheimer’s disease. J. Alzheimer’s Dis. 2008, 13, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Hautot, D.; Pankhurst, Q.A.; Khan, N.; Dobson, J. Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue. Proc. R. Soc. B 2003, 270 (Suppl. S1), S62–S64. [Google Scholar] [CrossRef] [Green Version]
- Devos, D.; Cabantchik, Z.I.; Moreau, C.; Danel, V.; Mahoney-Sanchez, L.; Bouchaoui, H.; Gouel, F.; Rolland, A.; Duce, J.A.; Devedjian, J. Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J. Neural. Transm. (Vienna) 2020, 127, 189–203. [Google Scholar] [CrossRef]
- Yokota, S.; Moriya, N.; Iwata, M.; Umezawa, M.; Oshio, S.; Takeda, K. Exposure to diesel exhaust during fetal period affects behavior and neurotransmitters in male offspring mice. J. Toxicol. Sci. 2013, 38, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, E.; Jeong, U.; Kim, Y.; Lee, B.; Cho, M.; Go, Y. Deleterious effects in reproduction and developmental immunity elicited by pulmonary iron oxide nanoparticles. Environ. Res. 2017, 152, 503–513. [Google Scholar] [CrossRef]
- Stephens, B.; Siegel, J.A. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters. Indoor Air 2013, 23, 488–497. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.J.; Abdo, P.; Torpy, F.R. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 2017, 125, 299–307. [Google Scholar] [CrossRef]
- Torpy, F.; Clements, N.; Pollinger, M.; Dengel, A.; Mulbvihill, I.; He, C.; Irga, P. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Qual. Atmos. Health 2018, 11, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Irga, P.J.; Paull, N.J.; Abdo, P.; Torpy, F.R. An assessment of the atmospheric particle removal efficiency of an in room botanical biofilter system. Build. Environ. 2017, 115, 281–290. [Google Scholar] [CrossRef]
- Llewellyn, D.; Darlington, A.; van Ras, N.; Kraakman, B.; Dixon, M. A hybridized membrane-botanical biofilter for improving air quality in occupied spaces. In Proceedings of the 37th COSPAR Scientific Assembly, Montreal, QC, Canada, 13–20 July 2008; Volume 37, p. 1813. [Google Scholar]
- Paull, N.J.; Irga, P.J.; Torpy, F.R. Active green wall plant health tolerance to diesel smoke exposure. Environ. Pollut. 2018, 240, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.J.; Park, B.J. Effects of indoor greening method on temperature relative humidity and particulate matter concentration. J. Korean Inst. Landsc. Archit. 2017, 45, 1–10. [Google Scholar]
- Lee, C.H.; Choi, B.; Chun, M.Y. Stabilizing soil moisture and indoor air quality purification in a wall-typed botanical biofiltration system controlled by humidifying cycle. Hortic. Sci. Tecnol. 2015, 33, 605–617. [Google Scholar]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.S. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build. Environ. 2011, 46, 758–768. [Google Scholar] [CrossRef]
- Kim, T.-H.; Choi, B.-H.; Choi, N.-H.; Jang, E.-S. Particulate matter and CO2 improvement effects by vegetation-based bio-filters and the indoor comfort index analysis. Korean J. Environ. Agric. 2018, 37, 268–276. [Google Scholar] [CrossRef]
- Soreanu, G.; Dixon, M.; Darlington, A. Botanical biofiltration of indoor gaseous pollutants—A mini-review. Chem. Eng. J. 2013, 229, 585–594. [Google Scholar] [CrossRef]
- Kim, T.; Choi, B. Study on PM10, PM2.5 Reduction effects and measurement method of vegetation bio-filters system in multi-use facility. J. Korean Inst. Landsc. Archit. 2020, 48, 80–88. [Google Scholar] [CrossRef]
- The Society of Air-Conditioning and Refrigerating Engineers of Korea. SAREK A101: Duct Airflow Measuring Method; SAREK: Seoul, Korea, 2011. [Google Scholar]
- Mugica-Álvarez, V.; Figueroa-Lara, J.; Romero-Romo, M.; Sepúlveda-Sánchez, J.; López-Moreno, T. Concentrations and properties of airborne particles in the Mexico City subway system. Atmos. Environ. 2012, 49, 284–293. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, Y.; Kim, T.; Choi, J.S.; Park, D. Sources and characteristics of particulate matter in subway tunnels in Seoul, Korea. Int. J. Environ. Res. Public Health 2018, 15, 2534. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Gong, H.; Liao, W.; Zhi, W. Accumulation of particles on the surface of leaves during leaf expansion. Sci. Total Environ. 2015, 532, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, T.; Ko, H.; Bae, S.; Kim, S.; Park, D.; Sohn, J.; Kim, D. Identification of PM10 chemical characteristics and sources and estimation of their contributions in a Seoul metropolitan subway station. J. Korean Soc. Atmos. Environ. 2013, 29, 74–85. [Google Scholar] [CrossRef]
- Park, E.; Kim, S.; Lee, G.; Jo, Y.; Yoon, C.; Kim, D.; Cho, J.; Han, J.; Lee, S.J.; Seong, E.; et al. Inhaled underground subway dusts may stimulate multiple pathways of cell death signals and disrupt immune balance. Environ. Res. 2020, 191, 109839. [Google Scholar] [CrossRef]
- Jung, H.; Kim, B.; Malek, M.A.; Koo, Y.S.; Jung, J.H.; Son, Y.; Kim, J.; Kim, H.; Ro, C. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea. J. Hazard. Mater. 2012, 213–214, 331–340. [Google Scholar] [CrossRef]
- Karlsson, H.; Holgersson, A.; Möller, L. Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem. Res. Toxicol. 2008, 21, 726–731. [Google Scholar] [CrossRef]
- Midander, K.; Elihn, K.; Wallen, A.; Belova, L.; Karlsson, A.; Wallinder, I. Characterisation of nano-and micron-sized airborne and collected subway particles, a multi-analytical approach. Sci. Total Environ. 2012, 427, 390. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Martins, V.; Querol, X.; Jones, T.; BéruBé, K.; Minguillón, M.C.; Amato, F.; Capdevila, M.; de Miguel, E.; Centelles, S.; et al. A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Total Environ. 2015, 505, 367–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagnotti, L.; Taddeucci, J.; Winkler, A.; Cavallo, A. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst. 2009, 10, Q08Z06. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef]
Sensor | Method | Range |
---|---|---|
PM2.5/PM10 | Light scattering method | 0–6000 μg/m3 |
Temperature | Semiconductor band gap type | −40 to 125 °C |
Relative humidity | Capacitive polymer | 0–100% relative humidity |
Pollutant | #1 | #2 | #3 | #4 | #5 | #6 | |
---|---|---|---|---|---|---|---|
PM10 | Mean | 40.4 | 48.8 | 42.1 | 46.8 | 63.5 | 69.2 |
SD | 24.2 | 31.1 | 28.2 | 32.2 | 31.1 | 36.2 | |
Max | 203 | 253 | 185 | 205 | 220 | 260 | |
Min | 5 | 8 | 7 | 7 | 7 | 5 | |
PM2.5 | Mean | 29.7 | 36.3 | 31.1 | 34.8 | 47.8 | 36.7 |
SD | 18.6 | 24.5 | 21.7 | 25.2 | 25.3 | 20.1 | |
Max | 173 | 214 | 148 | 171 | 184 | 148 | |
Min | 4 | 6 | 5 | 5 | 5 | 3 |
Date | PM10 (μg/m3) | PM2.5 (μg/m3) | Temperature (°C) | Relative Humidity (%) | |
---|---|---|---|---|---|
1st cycle (18 April–23 May) | Mean | 49.7 | 26.1 | 19.9 | 54.6 |
SD | 26.7 | 14.3 | 2.3 | 15.0 | |
max | 208.0 | 115.0 | 24.0 | 80.6 | |
min | 0.0 | 0.0 | 11.9 | 21.6 | |
2nd cycle (24 May–28 June) | Mean | 58.6 | 30.8 | 25.2 | 63.2 |
SD | 24.6 | 13.4 | 2.5 | 7.0 | |
max | 254.0 | 150.0 | 30.5 | 82.2 | |
min | 0.0 | 0.0 | 18.7 | 39.8 | |
3rd cycle (27 June–1 August) | Mean | 44.8 | 23.5 | 27.4 | 67.7 |
SD | 24.9 | 13.1 | 1.0 | 6.3 | |
max | 210.0 | 116.0 | 29.7 | 84.3 | |
min | 0.0 | 0.0 | 23.6 | 46.3 |
Supply Air (SA) (m/s) | Return Air (RA) (m/s) | ||||||||||
Measuring Point | a | b | c | d | e | a | b | c | d | e | |
1 | 0.37 | 0.28 | 0.19 | 0.24 | 0.34 | 0.13 | 0.15 | 0.14 | 0.05 | 0.15 | |
2 | 0.29 | 0.27 | 0.28 | 0.24 | 0.30 | 0.14 | 0.13 | 0.14 | 0.13 | 0.18 | |
3 | 0.45 | 0.34 | 0.29 | 0.27 | 0.33 | 0.09 | 0.10 | 0.11 | 0.15 | 0.14 | |
4 | 0.40 | 0.33 | 0.31 | 0.26 | 0.41 | 0.10 | 0.12 | 0.10 | 0.16 | 0.18 | |
5 | 0.24 | 0.21 | 0.26 | 0.25 | 0.24 | 0.10 | 0.08 | 0.14 | 0.15 | 0.16 | |
6 | - | - | - | - | - | 0.08 | 0.12 | 0.10 | 0.13 | 0.15 | |
7 | - | - | - | - | - | 0.10 | 0.11 | 0.13 | 0.15 | 0.12 | |
Mean(m/s) | 0.30 | 0.13 | |||||||||
SD | 0.06 | 0.03 | |||||||||
Air flow rate (m3/h) | 111.74 | 177.18 |
Sampling Area | Mean Weight Ratio (SD) (in wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Si | Na | Mg | Cl | Ca | K | Al | Fe | |
B | 61.8 (1.3) | 25.5 (0.6) | 1.1 (0.1) | 0.1 (0.2) | ND | 0.2 (0.2) | 1.4 (0.2) | 0.2 (0.3) | ND | 9.6 (0.8) |
C | 68.2 (0.6) | 28.4 (0.2) | ND | ND | ND | ND | 1.1 (0.4) | ND | ND | 2.3 (0.5) |
D | 69.3 (0.8) | 29.1 (0.4) | ND | 0.3 (0.5) | ND | ND | 0.9 (0.3) | ND | ND | 0.4 (0.3) |
Sampling Area | Mean Weight Ratio (SD) (in wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Si | Na | Mg | Cl | Ca | K | Al | Fe | |
B | 63.8 (1.0) | 26.0 (0.6) | 0.3 (0.4) | ND | ND | ND | 0.4 (0.3) | ND | ND | 9.6 (1.2) |
C | 64.3 (2.1) | 27.5 (1.3) | 0.3 (0.5) | ND | ND | 0.5 (0.4) | 1.8 (0.8) | ND | ND | 5.5 (1.8) |
D | 60.8 (5.2) | 27.0 (1.7) | ND | 0.9 (0.0) | 0.3 (0.4) | 2.3 (1.4) | 4.4 (3.5) | 0.3 (0.4) | ND | 4.0 (1.3) |
Sampling Area | Mean Weight Ratio (SD) (in wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Si | Na | Mg | Cl | Ca | K | Al | Fe | |
B | 61.2 (0.5) | 25.0 (1.2) | ND | ND | ND | ND | 2.2 (0.2) | ND | 0.4 (0.6) | 11.2 (0.4) |
C | 67.1 (0.7) | 29.4 (0.5) | ND | ND | ND | ND | 1.0 (0.3) | ND | ND | 2.5 (0.8) |
D | 67.6 (0.4) | 27.9 (0.4) | ND | 0.2 (0.3) | ND | 0.6 (0.4) | 1.9 (0.3) | ND | ND | 1.8 (0.3) |
Sampling Time | Mean Weight Ratio (SD) (in wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Si | Na | Mg | Cl | Ca | K | Al | Fe | |
23 May | 68.2 (0.6) | 29.9 (0.4) | ND | ND | ND | 0.7 (0.1) | 1.2 (0.2) | ND | ND | ND |
28 June | 68.0 (0.3) | 30.3 (0.3) | ND | ND | ND | 0.0 (0.0) | 0.7 (0.0) | ND | ND | 1.0 (0.1) |
1 August | 65.3 (1.8) | 31.1 (0.4) | ND | ND | ND | 0.0 (0.0) | 3.3 (1.2) | ND | ND | 0.4 (0.3) |
RA | SA | Z | p | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
1st cycle (18 April–23 May) | 4.11 | 4.26 | 0.26 | 0.39 | −2.31 | 0.021 |
2nd cycle (24 May–28 June) | 6.37 | 2.95 | 0.79 | 0.51 | −2.67 | 0.008 |
3rd cycle (29 June–1 August) | 5.20 | 4.58 | 0.71 | 0.48 | −2.66 | 0.008 |
Sampling Area | SA | RA | |||
---|---|---|---|---|---|
A | B | C | D | ||
Equivalent circle diameter (ECD, µm) (SD) | 6.79 (3.70) | 13.13 (2.00) | 8.07 (2.14) | 19.88 (17.02) | |
Mean weight ratio (SD) (in wt.%) | C | 72.12 (2.03) | 14.95 (6.68) | 32.02 (3.84) | 53.32 (10.28) |
O | 23.70 (1.74) | 2.17 (0.83) | 11.01 (6.73) | 14.41 (4.00) | |
Fe | 2.48 (2.35) | 71.32 (17.45) | 37.14 (17.73) | 30.29 (12.3) | |
Na | 0.37 (0.27) | ND | 8.45 (5.50) | ND | |
Mg | ND | ND | 0.42 (0.59) | ND | |
Al | 0.22 (0.32) | 9.45 (7.39) | 0.89 (0.71) | ND | |
Ca | ND | 0.64 (0.91) | 1.71 (0.31) | 1.37 (0.41) | |
Si | 0.92 (1.12) | 2.19 (3.09) | 0.91 (1.29) | 0.61 (0.86) | |
Cl | ND | ND | 6.74 (0.77) | ND | |
Mn | ND | ND | 0.25 (0.35) | ND | |
K | 0.18 (0.25) | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-H.; Choi, B.-H.; Kang, M.-S.; Lee, H.-J. Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea. Atmosphere 2021, 12, 1463. https://doi.org/10.3390/atmos12111463
Kim T-H, Choi B-H, Kang M-S, Lee H-J. Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea. Atmosphere. 2021; 12(11):1463. https://doi.org/10.3390/atmos12111463
Chicago/Turabian StyleKim, Tae-Han, Boo-Hun Choi, Moon-Sung Kang, and Han-Ju Lee. 2021. "Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea" Atmosphere 12, no. 11: 1463. https://doi.org/10.3390/atmos12111463
APA StyleKim, T. -H., Choi, B. -H., Kang, M. -S., & Lee, H. -J. (2021). Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea. Atmosphere, 12(11), 1463. https://doi.org/10.3390/atmos12111463