Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = fixed charge tag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2727 KiB  
Article
Concept of Normativity in Multi-Omics Analysis of Axon Regeneration
by Isabella Moceri, Sean Meehan, Emily Gonzalez, Kevin K. Park, Abigail Hackam, Richard K. Lee and Sanjoy Bhattacharya
Biomolecules 2024, 14(7), 735; https://doi.org/10.3390/biom14070735 - 21 Jun 2024
Cited by 2 | Viewed by 1780
Abstract
Transcriptomes and proteomes can be normalized with a handful of RNAs or proteins (or their peptides), such as GAPDH, β-actin, RPBMS, and/or GAP43. Even with hundreds of standards, normalization cannot be achieved across different molecular mass ranges for small molecules, such as lipids [...] Read more.
Transcriptomes and proteomes can be normalized with a handful of RNAs or proteins (or their peptides), such as GAPDH, β-actin, RPBMS, and/or GAP43. Even with hundreds of standards, normalization cannot be achieved across different molecular mass ranges for small molecules, such as lipids and metabolites, due to the non-linearity of mass by charge ratio for even the smallest part of the spectrum. We define the amount (or range of amounts) of metabolites and/or lipids per a defined amount of a protein, consistently identified in all samples of a multiple-model organism comparison, as the normative level of that metabolite or lipid. The defined protein amount (or range) is a normalized value for one cohort of complete samples for which intrasample relative protein quantification is available. For example, the amount of citrate (a metabolite) per µg of aconitate hydratase (normalized protein amount) identified in the proteome is the normative level of citrate with aconitase. We define normativity as the amount of metabolites (or amount range) detected when compared to normalized protein levels. We use axon regeneration as an example to illustrate the need for advanced approaches to the normalization of proteins. Comparison across different pharmacologically induced axon regeneration mouse models entails the comparison of axon regeneration, studied at different time points in several models designed using different agents. For the normalization of the proteins across different pharmacologically induced models, we perform peptide doping (fixed amounts of known peptides) in each sample to normalize the proteome across the samples. We develop Regen V peptides, divided into Regen III (SEB, LLO, CFP) and II (HH4B, A1315), for pre- and post-extraction comparisons, performed with the addition of defined, digested peptides (bovine serum albumin tryptic digest) for protein abundance normalization beyond commercial labeled relative quantification (for example, 18-plex tandem mass tags). We also illustrate the concept of normativity by using this normalization technique on regenerative metabolome/lipidome profiles. As normalized protein amounts are different in different biological states (control versus axon regeneration), normative metabolite or lipid amounts are expected to be different for specific biological states. These concepts and standardization approaches are important for the integration of different datasets across different models of axon regeneration. Full article
(This article belongs to the Special Issue Advances in Neuroproteomics)
Show Figures

Figure 1

20 pages, 1550 KiB  
Article
Asset Ownership Transfer and Inventory Using RFID UHF TAGS and Ethereum Blockchain NFTs
by Cesar Munoz-Ausecha, Jorge Eliecer Gómez Gómez, Juan Ruiz-Rosero and Gustavo Ramirez-Gonzalez
Electronics 2023, 12(6), 1497; https://doi.org/10.3390/electronics12061497 - 22 Mar 2023
Cited by 6 | Viewed by 3306
Abstract
In the present, many organizations grow on a daily basis, using many assets to perform their activities and generate profit. In large organizations, all of these assets must be managed, occasionally leading to challenges depending on the organization’s size. For this reason, the [...] Read more.
In the present, many organizations grow on a daily basis, using many assets to perform their activities and generate profit. In large organizations, all of these assets must be managed, occasionally leading to challenges depending on the organization’s size. For this reason, the role of asset custodian is needed. This role entails assigning the fixed assets to one person for their care, maintenance, and safekeeping. In this process, it is necessary to update information in the central system, leading to further administrative processes, which, in the majority of cases, are carried out through traditional methods. This involves time to obtain wet signatures, a great deal of paperwork, and time for the person or people in charge to update the information. Due to these reasons, the process can be updated partially or entirely to use digital means in order to solve the mentioned inconveniences. This paper presents a proof-of-concept system to offer a modernized and practical solution to this problem using the advantages of blockchain technology, and speeding up the process by using assets identified with UHF RFID technology to permit the reading of many tags that can be embedded and hidden with no need for line-of-sight, allowing fast ownership transfer, using smart contracts in the Ethereum private blockchain. Full article
(This article belongs to the Special Issue Blockchain Technology and Distributed Applications (DApps))
Show Figures

Figure 1

11 pages, 2555 KiB  
Article
Peptidyl-Resin Substrates as a Tool in the Analysis of Caspase Activity
by Remigiusz Bąchor
Molecules 2022, 27(13), 4107; https://doi.org/10.3390/molecules27134107 - 26 Jun 2022
Cited by 3 | Viewed by 2129
Abstract
Caspases, proteolytic enzymes belonging to the group of cysteine proteases, play a crucial role in apoptosis. Understanding their activity and substrate specificity is extremely important. Fluorescence-based approaches, including fluorogenic substrates, are generally used to confirm cleavage preferences. Here we present a new method [...] Read more.
Caspases, proteolytic enzymes belonging to the group of cysteine proteases, play a crucial role in apoptosis. Understanding their activity and substrate specificity is extremely important. Fluorescence-based approaches, including fluorogenic substrates, are generally used to confirm cleavage preferences. Here we present a new method of substrate specificity and activity analysis based on the application of fix-charge tagged peptides located on the resin. The proteolysis of peptide bond on the resin, occurring even with low efficiency, results in the formation of N-terminal fragments of model peptide containing ionization enhancers in the form of quaternary ammonium groups, allowing for ultrasensitive and reliable analysis by LC-MS/MS. The possibility of application of the proposed solution was tested through the analysis of substrate specificity and activity of caspase 3 or 7. The obtained results confirm the known substrate specificity of executioner caspases. Our solution also allowed us to observe that caspases can hydrolyze peptides shorter than those presented to date in the scientific literature. Full article
Show Figures

Figure 1

23 pages, 5600 KiB  
Article
Analysis of Fragmentation Pathways of Peptide Modified with Quaternary Ammonium and Phosphonium Group as Ionization Enhancers
by Monika Kijewska, Dorota Gąszczyk, Remigiusz Bąchor, Piotr Stefanowicz and Zbigniew Szewczuk
Molecules 2021, 26(22), 6964; https://doi.org/10.3390/molecules26226964 - 18 Nov 2021
Cited by 2 | Viewed by 3156
Abstract
Peptide modification by a quaternary ammonium group containing a permanent positive charge is a promising method of increasing the ionization efficiency of the analyzed compounds, making ultra-sensitive detection even at the attomolar level possible. Charge-derivatized peptides may undergo both charge remote (ChR) and [...] Read more.
Peptide modification by a quaternary ammonium group containing a permanent positive charge is a promising method of increasing the ionization efficiency of the analyzed compounds, making ultra-sensitive detection even at the attomolar level possible. Charge-derivatized peptides may undergo both charge remote (ChR) and charge-directed (ChD) fragmentation. A series of model peptide conjugates derivatized with N,N,N-triethyloammonium (TEA), 1-azoniabicyclo[2.2.2]octane (ABCO), 2,4,6-triphenylopyridinium (TPP) and tris(2,4,6-trimetoxyphenylo)phosphonium (TMPP) groups were analyzed by their fragmentation pathways both in collision-induced dissociation (CID) and electron-capture dissociation (ECD) mode. The effect of the fixed-charge tag type and peptide sequence on the fragmentation pathways was investigated. We found that the aspartic acid effect plays a crucial role in the CID fragmentation of TPP and TEA peptide conjugates whereas it was not resolved for the peptides derivatized with the phosphonium group. ECD spectra are mostly dominated by cn ions. ECD fragmentation of TMPP-modified peptides results in the formation of intense fragments derived from this fixed-charge tag, which may serve as reporter ion. Full article
Show Figures

Figure 1

15 pages, 3390 KiB  
Article
Operation Strategy of Parking Lots Integrated with PV and Considering Energy Price Tags
by Zexin Yang, Xueliang Huang, Shan Gao, Qi Zhao, Hongen Ding, Tian Gao, Dongyu Mao and Rui Ye
World Electr. Veh. J. 2021, 12(4), 205; https://doi.org/10.3390/wevj12040205 - 21 Oct 2021
Cited by 6 | Viewed by 2545
Abstract
In recent years, the orderly charging of electric vehicles (EVs) in commercial parking has become a meaningful research topic due to the increasing number of EVs, especially for parking lots close to workplaces and serving fixed users. In this paper, a parking lot [...] Read more.
In recent years, the orderly charging of electric vehicles (EVs) in commercial parking has become a meaningful research topic due to the increasing number of EVs, especially for parking lots close to workplaces and serving fixed users. In this paper, a parking lot energy management system integrated with energy storage system (ESS) and photovoltaic (PV) system is established. The concept of energy price tag (EPT) is introduced to define the price of all energy storage devices, and the priority order between PV, ESS, EVs, and power grid is established. Taking the minimization of charging cost as the optimization objective, the charging plans of ESS, EVs, and buildings are optimized considering the constraints of EVs user demand and PV power. By comparing the simulation results of four cases, it is proven that this strategy can reduce the charging cost and improve the consumption rate of PV. Full article
Show Figures

Figure 1

26 pages, 9318 KiB  
Article
Application of Safirinium N-Hydroxysuccinimide Esters to Derivatization of Peptides for High-Resolution Mass Spectrometry, Tandem Mass Spectrometry, and Fluorescent Labeling of Bacterial Cells
by Joanna Fedorowicz, Magdalena Wierzbicka, Marek Cebrat, Paulina Wiśniewska, Rafał Piątek, Beata Zalewska-Piątek, Zbigniew Szewczuk and Jarosław Sączewski
Int. J. Mol. Sci. 2020, 21(24), 9643; https://doi.org/10.3390/ijms21249643 - 17 Dec 2020
Cited by 10 | Viewed by 3554
Abstract
Mass spectrometry methods are commonly used in the identification of peptides and biomarkers. Due to a relatively low abundance of proteins in biological samples, there is a need for the development of novel derivatization methods that would improve MS detection limits. Hence, novel [...] Read more.
Mass spectrometry methods are commonly used in the identification of peptides and biomarkers. Due to a relatively low abundance of proteins in biological samples, there is a need for the development of novel derivatization methods that would improve MS detection limits. Hence, novel fluorescent N–hydroxysuccinimide esters of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium carboxylates (Safirinium P dyes) have been synthesized. The obtained compounds, which incorporate quaternary ammonium salt moieties, easily react with aliphatic amine groups of peptides, both in solution and on the solid support; thus, they can be applied for derivatization as ionization enhancers. Safirinium tagging experiments with ubiquitin hydrolysate revealed that the sequence coverage level was high (ca. 80%), and intensities of signals were enhanced up to 8-fold, which proves the applicability of the proposed tags in the bottom–up approach. The obtained results confirmed that the novel compounds enable the detection of trace amounts of peptides, and fixed positive charge within the tags results in high ionization efficiency. Moreover, Safirinium NHS esters have been utilized as imaging agents for fluorescent labeling and the microscopic visualization of living cells such as E. coli Top10 bacterial strain. Full article
(This article belongs to the Special Issue High Resolution Mass Spectrometry in Molecular Sciences)
Show Figures

Graphical abstract

13 pages, 1602 KiB  
Article
Detection of Podocin in Human Urine Sediment Samples by Charge Derivatization and LC-MS-MRM Method
by Remigiusz Bąchor, Dorota Gąszczyk, Karolina Panek-Laszczyńska, Andrzej Konieczny, Wojciech Witkiewicz, Piotr Stefanowicz and Zbigniew Szewczuk
Int. J. Mol. Sci. 2020, 21(9), 3225; https://doi.org/10.3390/ijms21093225 - 2 May 2020
Cited by 6 | Viewed by 3027
Abstract
Detection of podocytes in urine might serve as a useful diagnostic tool in both primary and secondary glomerular diseases. The utility of podocyturia has been confirmed for both pre-eclampsia and glomerulonephritis. Here, we present a new and sensitive method for qualitative LC-MS-multiple-reaction-monitoring (MRM) [...] Read more.
Detection of podocytes in urine might serve as a useful diagnostic tool in both primary and secondary glomerular diseases. The utility of podocyturia has been confirmed for both pre-eclampsia and glomerulonephritis. Here, we present a new and sensitive method for qualitative LC-MS-multiple-reaction-monitoring (MRM) analysis of podocin, serving as a podocyturia biomarker in urine sediments. The following podocin tryptic peptides with the 169LQTLEIPFHEIVTK182, 213AVQFLVQTTMK223, 240SIAQDAK246, and 292MIAAEAEK299 sequences were applied as a model. The selective chemical derivatization of the ε amino group of C-terminal lysine residue in tryptic peptides, by 2,4,6-triphenylpyrylium salt (TPP) as a fixed charge tag, was employed to increase the ionization efficiency, in routine ESI-MS analysis. Additionally, the generation of a reporter ion, in the form of a protonated 2,4,6-triphenylpyridinium cation, makes the derivatized peptide analysis in the MRM mode unambiguous. Identification of derivatized and non-derivatized peptides were performed, and the obtained results suggest that the peptide with the 292MIAAEAEK299 sequence may serve as a marker of podocyturia. Full article
(This article belongs to the Special Issue Recent Advances of Proteomics Applied to Cancer and Human Diseases)
Show Figures

Figure 1

10 pages, 2559 KiB  
Article
Enrichment of Cysteine-Containing Peptide by On-Resin Capturing and Fixed Charge Tag Derivatization for Sensitive ESI-MS Detection
by Remigiusz Bąchor, Oliwia Gorzeń, Anna Rola, Karolina Mojsa, Karolina Panek-Laszczyńska, Andrzej Konieczny, Krystyna Dąbrowska, Wojciech Witkiewicz and Zbigniew Szewczuk
Molecules 2020, 25(6), 1372; https://doi.org/10.3390/molecules25061372 - 18 Mar 2020
Cited by 7 | Viewed by 4630
Abstract
High complexity of cell and tissue proteomes limits the investigation of proteomic biomarkers. Therefore, the methods of enrichment of some chemical groups of peptides including thiopeptides are important tools that may facilitate the proteomic analysis by reducing sample complexity and increasing proteome coverage. [...] Read more.
High complexity of cell and tissue proteomes limits the investigation of proteomic biomarkers. Therefore, the methods of enrichment of some chemical groups of peptides including thiopeptides are important tools that may facilitate the proteomic analysis by reducing sample complexity and increasing proteome coverage. Here, we present a new method of cysteine-containing tryptic peptide enrichment using commercially available TentaGel R RAM resin modified by the linker containing the maleimide group, allowing thiol conjugation. The captured tryptic peptides containing lysine residue were then tagged by 2,4,6-triphenylpyrylium salt to form 2,4,6-triphenylpyridinium derivatives, which increases the ionization efficiency during mass spectrometry analysis. This makes it possible to conduct an ultrasensitive analysis of the trace amount of compounds. The proposed strategy was successfully applied in the enrichment of model tryptic podocin peptide and podocin tryptic digest. Full article
Show Figures

Figure 1

Back to TopTop